
www.manaraa.com

University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

2016

ChilliSource Game Engine Particle System Study ChilliSource Game Engine Particle System Study

Angela Gross
University of Montana, Missoula

Follow this and additional works at: https://scholarworks.umt.edu/etd

 Part of the Other Computer Sciences Commons, Software Engineering Commons, Systems

Architecture Commons, and the Theory and Algorithms Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Gross, Angela, "ChilliSource Game Engine Particle System Study" (2016). Graduate Student Theses,
Dissertations, & Professional Papers. 10813.
https://scholarworks.umt.edu/etd/10813

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F10813&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.umt.edu%2Fetd%2F10813&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.umt.edu%2Fetd%2F10813&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=scholarworks.umt.edu%2Fetd%2F10813&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=scholarworks.umt.edu%2Fetd%2F10813&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholarworks.umt.edu%2Fetd%2F10813&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/10813?utm_source=scholarworks.umt.edu%2Fetd%2F10813&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

www.manaraa.com

CHILLISOURCE GAME ENGINE PARTICLE SYSTEM STUDY

By

Angela Nicole Gross

Bachelor of Science, The University of Montana, Missoula, MT, 2014

Thesis

presented in partial fulfillment of the requirements
for the degree of

Master of Science
in Computer Science

The University of Montana
Missoula, MT

Autumn 2016

Approved by:

Scott Whittenburg Ph.D., Dean
Graduate School

Travis Wheeler Ph.D., Chair
Computer Science

Michael Cassens M.S.
Computer Science

Johnathan Bardsley Ph.D.
Mathematical Sciences

www.manaraa.com

© COPYRIGHT

by

Angela Nicole Gross

2016

All Rights Reserved

ii

www.manaraa.com

Gross, Angela N., M.S., December 2016 Computer Science

ChilliSource Game Engine Particle System Study

Chairperson: Travis Wheeler

The majority of modern game engines utilize intricate objects called particle systems
which are a collection of many particles that together represent an object without well-
defined surfaces. This thesis discusses the results of studying and stressing particle systems
within ChilliSource, an open-source game engine written in C++, with the goal of under-
standing a complex system and exploring possible optimizations that could be made to it.
The studies performed were driven by metrics generated with custom profiling classes that
kept track of things like the number of particles rendered, how long the engine spent ren-
dering particles, or even how long a background thread that updated particles waited for
a locked resource to release. These metrics supported experiments that revealed the inner
workings of an elaborate system and aided in the creation and dissection of optimizations.
The methods and results of these studies will aide anyone interested in reducing contention
in large data structures either by using multiple mutexes, data structure ”sharding”, or
hardware-based ”lock free” implementations. They are also useful to any developer in need
of profiling a complex system.

iii

www.manaraa.com

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my thesis advisor, Travis Wheeler, for

providing me with the support, insight, and expertise necessary to complete my research.

I would also like to thank a ChilliSource developer, Ian Copland, for his willingness to

assist me with my study of the engine he created. Additionally, I am incredibly grateful to

Andrea Johnson and Michael Breuer for their insightful comments that certainly improved

my work. Without all of you, it would not have been possible to conduct my research.

iv

www.manaraa.com

TABLE OF CONTENTS

COPYRIGHT . ii

ABSTRACT . iii

ACKNOWLEDGMENTS . iv

CODE LISTINGS . ix

LIST OF FIGURES . xii

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 BACKGROUND . 3

2.1 Particle Systems . 3

2.1.1 Overview . 3

2.1.2 Reeve’s Particle Model . 5

2.1.2.1 Life Cycle . 5

2.1.2.2 Particle Attributes . 5

2.1.2.3 Hierarchy . 6

2.2 The ChilliSource Game Engine . 7

2.2.1 Overview . 7

2.2.2 Architecture . 7

2.2.3 Life Cycle . 9

2.3 ChilliSource Particle Effect Components . 11

2.3.1 Overview . 11

v

www.manaraa.com

2.3.2 Architecture . 12

2.3.2.1 Overview . 12

2.3.2.2 Particle Effect . 12

2.3.2.3 Particle Drawable . 15

2.3.2.4 Particle Emitter . 15

2.3.2.5 Particle Affector . 16

2.3.2.6 Particle Array . 17

2.3.2.7 Concurrent Particle Data 18

2.3.2.8 Other Important Attributes 18

2.3.3 Life Cycle . 19

2.3.3.1 Overview . 19

2.3.3.2 Initialization Phase . 19

2.3.3.3 Update Phase . 20

2.3.3.4 Render Phase . 23

2.3.3.5 Clean Up Phase . 24

2.3.4 Usage . 24

CHAPTER 3 THE CHILLISOURCE AUTOMATED PONG GAME . . 27

3.1 Overview . 27

3.2 Architecture . 28

3.2.1 Overview . 28

3.2.2 CSAPong Application . 29

3.2.3 Application Systems . 29

3.2.4 Game State . 30

3.2.5 State Systems . 30

3.3 Gameplay . 31

3.3.1 Logistics . 31

vi

www.manaraa.com

3.3.2 Examples . 32

3.4 Initial Results . 37

CHAPTER 4 CHILLISOURCE PARTICLE EFFECT COMPONENT

OPTIMIZATION CASE STUDIES . 40

4.1 Counting Contention . 40

4.2 Using More Than One Mutex . 42

4.2.1 Code . 42

4.2.2 Results . 46

4.2.3 Discussion . 47

4.3 Using A Lock Free Data Structure . 50

4.3.1 Code . 51

4.3.2 Results . 55

4.3.3 Discussion . 58

4.4 Unexpected Results with Multiple Particle Effects 59

4.4.1 Using More Than One Mutex Results 60

4.4.2 Lock Free Results . 62

4.4.3 Discussion . 64

CHAPTER 5 CHILLISOURCE PARTICLE EFFECT COMPONENT

OBSERVATION STUDIES . 68

5.1 Overview . 68

5.2 Copying Data with ConcurrentParticleData 68

5.2.1 Overview . 68

5.2.2 Code . 70

5.2.3 Results . 73

5.2.4 Discussion . 73

5.3 Multithreading and Task Scheduling . 78

vii

www.manaraa.com

5.3.1 The ChilliSource Task Scheduler . 78

5.3.2 Code . 81

5.3.2.1 Small and Game Logic Task Type 82

5.3.2.2 No Task Scheduled (Not Threaded) 82

5.3.3 Results . 83

5.3.4 Discussion . 88

5.4 Particles Failing to Render . 89

5.4.1 Render Failure . 89

5.4.2 Emission Failure Source . 90

5.4.3 Emission Failure Solution . 91

CHAPTER 6 CONCLUSION . 102

APPENDIX A INSTRUMENTATION APPENDIX 105

A.1 Overview . 105

A.2 Metrics System . 105

A.2.1 Metadata . 105

A.2.2 Metrics . 108

A.2.3 Particle Effect Definition . 109

A.3 Timing System . 110

A.3.1 Visual Studio . 110

A.3.2 Shiny . 112

A.3.3 Timing Application System . 113

A.4 Output and its Evolution . 114

BIBLIOGRAPHY . 115

viii

www.manaraa.com

CODE LISTINGS

1 An example ChilliSource particle definition file for a generic particle effect. Note how the

initial and changing-over-time (i.e. ”affector”) Properties can either be random values

or constants. 13

2 The struct that is used to describe the properties of a particle within the Particle Array

in Particle Effect Component. 17

3 The struct that is used to describe the properties of a particle within the Particle Array

in Concurrent Particle Data. 18

4 The struct that is used to bundle all information needed by the background task performing

the particle update. 20

5 Pseudocode describing how a Particle Effect Component is updated by scheduling a

background task. 21

6 Pseudocode describing what CommitParticleData does when it copies its data to the

Concurrent Particle Data instance. 22

7 Pseudocode showing how a Particle Effect Component uses its Drawable to render

itself. 23

8 Creating a scene that adds a basic Particle Effect Component in ChilliSource. . . 24

9 The function to create an ambient light with the Basic Entity Factory state system. 25

10 Creating a basic particle effect component with ChilliSource. 26

ix

www.manaraa.com

11 Pseudocode illustrating the changes needed to utilize more than one mutex in the CommitParticleData

function. Note that, instead of locking only one mutex, three different mutexes were locked

at different times depending on the resource needed (i.e. the particles array, the new

particle indices array, or the non-data structure array). 44

12 Pseudocode illustrating the changes needed to utilize more than one mutex in the Draw

function. Note that, instead of locking only one mutex, two different mutexes were locked

at different times depending on the resource needed (i.e. the particles array or the new

particle indices array). 45

13 Pseudocode illustrating the behavior that a compare-and-swap operation. Although it is

shown as a function here to demonstrate how it works, it is executed atomically via special

hardware instructions. 52

14 The struct that is used to within the particle array in Concurrent Particle Data

during the Lock Free case study. 53

15 Pseudocode illustrating the changes needed to make the particles array a lock free

data structure in the CommitParticleData function. 53

16 Pseudocode illustrating the changes needed to make the particles array a lock free

data structure in the Draw function. 54

17 Pseudocode describing the important changes needed to remove the ConcurrentParticleData

instance from the Particle Effect Component. 71

18 Pseudocode describing the important changes needed to remove the ConcurrentParticleData

instance from the Particle Drawable. 72

19 Pseudocode showing how ChilliSource’s Task Scheduler schedules small tasks, game

logic tasks, and main thread tasks. This provides context on how the scheduler schedules

tasks and, most importantly, how the game logic task uses the gameLogicCondition

member variable to notify the main thread when all game logic tasks are executed (see

Code Listing 20). 80

x

www.manaraa.com

20 Pseudocode showing how game logic tasks force the main thread to wait until they are

finished before allowing the main thread to continue. See Code Listing 19 to see how the

gameLogicCondition variable is used to notify the main thread that the game logic tasks

are completed. 81

21 Pseudocode showing how ParticleUpdateTask can be scheduled as a small task and as

a game logic task. 82

22 Pseudocode showing how ParticleUpdateTask was not scheduled and was simply run

on the main thread. 82

23 An example invocation of the generate particles script. 109

24 Using the pseudocode from Code Listing 5, this shows how Shiny could be used to instru-

ment ParticleUpdateTask. 113

25 Using the pseudocode from Code Listing 5, this shows how our custom Timing System

could be used to instrument ParticleUpdateTask. 114

xi

www.manaraa.com

LIST OF FIGURES

Figure 2.1 Particle effect created by William T. Reeves 3

Figure 2.2 Cubes emitting particles . 4

Figure 2.3 Basic structure of a ChilliSource application 8

Figure 2.4 An example of the Update life cycle event 11

Figure 2.5 Basic structure of a ChilliSource Particle Effect Component 13

Figure 3.1 A series of screenshots illustrating how the original pong game works. 28

Figure 3.2 The basic architecture of the automated pong game. 29

Figure 3.3 A series of screenshots showing the automated game with no particles. 33

Figure 3.4 A series of screenshots showing the automated game with a single,

giant burst of particles. 34

Figure 3.5 A series of screenshots showing the automated game with multiple

bursts of particle emissions. 35

Figure 3.6 A Visual Studio call tree sourced from the games based on the meta-

data in Figure 3.7. 38

Figure 3.7 Metadata of a series of games that demonstrated contention in

CommitParticleData. 38

Figure 3.8 Timing output based on the metadata in Figure 3.7. 38

Figure 4.1 The results of ”counting the contention” between the background

and main threads in Concurrent Particle Data. 40

xii

www.manaraa.com

Figure 4.2 Illustrates how all of Concurrent Particle Data’s member vari-

ables are locked when their values are either being updated by a

background thread in CommitParticleData or read from by the

main thread in Draw. 43

Figure 4.3 Illustrates how the particles array and the rendering objects are given

separate mutexes for the more than one mutex case study. 43

Figure 4.4 Illustrates the relationship between locking two mutexes between the

drawing and updating threads over the lifetime of a particle effect. 44

Figure 4.5 The metadata used for the 8 series of automated games for the case

studies. 46

Figure 4.6 More Than One Mutex Case Study: A graph showing render ball

function calls over total maximum particles for a single particle effect. 48

Figure 4.7 More Than One Mutex Case Study: A graph showing particles ac-

tually rendered over total maximum particles for a single particle

effect. 48

Figure 4.8 More Than One Mutex Case Study: A graph showing the number

of section calls for various sections of code for a single particle effect. 49

Figure 4.9 More Than One Mutex Case Study: A graph showing the time spent

in various sections of code for a single particle effect. 49

Figure 4.10 Shows the particle array with a mutex for every particle element

(left) and with an atomic variable for every particle element (right). 50

Figure 4.11 Lock Free Case Study: A graph showing render ball function calls

over total maximum particles for a single particle effect. 56

Figure 4.12 Lock Free Case Study: A graph showing particles actually rendered

over total maximum particles for a single particle effect. 56

Figure 4.13 Lock Free Case Study: A graph showing the number of section calls

for various sections of code for a single particle effect. 57

xiii

www.manaraa.com

Figure 4.14 Lock Free Case Study: A graph showing the time spent in various

sections of code for a single particle effect. 57

Figure 4.15 The metadata used for the 8 series of automated games for the un-

expected results from the case studies. 59

Figure 4.16 More Than One Mutex Case Study: A graph showing render ball

function calls over total maximum particles for ten particle effects. 60

Figure 4.17 More Than One Mutex Case Study: A graph showing particles ac-

tually rendered over total maximum particles for ten particle effects. 60

Figure 4.18 More Than One Mutex Case Study: A graph showing the number

of section calls for various sections of code for ten particle effects. . 61

Figure 4.19 More Than One Mutex Case Study: A graph showing the time spent

in various sections of code for ten particle effects. 61

Figure 4.20 Lock Free Case Study: A graph showing render ball function calls

over total maximum particles for ten particle effects. 62

Figure 4.21 Lock Free Case Study: A graph showing particles actually rendered

over total maximum particles for ten particle effects. 62

Figure 4.22 Lock Free Case Study: A graph showing the number of section calls

for various sections of code for ten particle effects. 63

Figure 4.23 Lock Free Case Study: A graph showing the time spent in various

sections of code for ten particle effects. 63

Figure 4.24 A summary of the timed sections for the unexpected results for the

Lock Free and > 1 Mutex case studies for a single particle effect. . 65

Figure 4.25 A summary of the timed sections for the unexpected results for the

Lock Free and > 1 Mutex case studies for ten particle effects. . . . 65

Figure 4.26 The lifetime of a single particle effect in relation to its scheduled

background thread and the main thread. 66

xiv

www.manaraa.com

Figure 4.27 The lifetime of a many particle effects in relation to their scheduled

background threads and the main thread. 66

Figure 5.1 Demonstrates how the updating and rendering threads use the

ConcurrentParticleData object to communicate information

about the particle effect. 69

Figure 5.2 Demonstrates how, during this observation study, updating and ren-

dering threads worked directly with the particle effect data. 69

Figure 5.3 Using Copies Observation: A graph showing render ball function

calls over total maximum particles for a single particle effect. . . . 74

Figure 5.4 Using Copies Observation: A graph showing particles actually ren-

dered over total maximum particles for a single particle effect. . . . 74

Figure 5.5 Using Copies Observation: A graph showing render ball function

calls over total maximum particles for ten particle effects. 75

Figure 5.6 Using Copies Observation: A graph showing particles actually ren-

dered over total maximum particles for ten particle effects. 75

Figure 5.7 Using Copies Observation: A graph showing the number of section

calls for various sections of code for a single particle effect. 76

Figure 5.8 Using Copies Observation: A graph showing the time spent in vari-

ous sections of code for a single particle effect. 76

Figure 5.9 Using Copies Observation: A graph showing the number of section

calls for various sections of code for ten particle effects. 77

Figure 5.10 Using Copies Observation: A graph showing the time spent in vari-

ous sections of code for ten particle effects. 77

Figure 5.11 Illustrates the lifetime of small tasks, game logic tasks, and main

thread tasks in relation to the main thread. 79

xv

www.manaraa.com

Figure 5.12 Illustrates the relationship between the updating and rendering pro-

cesses when the updating thread is defined as a small task, game

logic task, and when the updating process is not parallelized (i.e.

not threaded). 79

Figure 5.13 Task Scheduling Observation: A graph showing render ball function

calls over total maximum particles for a single particle effect. . . . 84

Figure 5.14 Task Scheduling Observation: A graph showing particles actually

rendered over total maximum particles for a single particle effect. . 84

Figure 5.15 Task Scheduling Observation: A graph showing render ball function

calls over total maximum particles for ten particle effects. 85

Figure 5.16 Task Scheduling Observation: A graph showing particles actually

rendered over total maximum particles for ten particle effects. . . . 85

Figure 5.17 Task Scheduling Observation: A graph showing the number of sec-

tion calls for various sections of code for a single particle effect. . . 86

Figure 5.18 Task Scheduling Observation: A graph showing the time spent in

various sections of code for a single particle effect. 86

Figure 5.19 Task Scheduling Observation: A graph showing the number of sec-

tion calls for various sections of code for ten particle effects. 87

Figure 5.20 Task Scheduling Observation: A graph showing the time spent in

various sections of code for ten particle effects. 87

Figure 5.21 Demonstrates the difference between looping and non-looping parti-

cle effects that both have a duration of 3 seconds. 90

Figure 5.22 Emission Failure Observation: A graph showing render ball function

calls over total maximum particles for a single particle effect. . . . 92

Figure 5.23 Emission Failure Observation: A graph showing particles actually

rendered over total maximum particles for a single particle effect. . 92

xvi

www.manaraa.com

Figure 5.24 Emission Failure Observation: A graph showing render ball function

calls over total maximum particles for a single particle effect. . . . 93

Figure 5.25 Emission Failure Observation: A graph showing particles actually

rendered over total maximum particles for a single particle effect. . 93

Figure 5.26 Emission Failure Observation: A graph showing the number of sec-

tion calls for various sections of code for a single particle effect. . . 94

Figure 5.27 Emission Failure Observation: A graph showing the time spent in

various sections of code for a single particle effect. 94

Figure 5.28 Emission Failure Observation: A graph showing the number of sec-

tion calls for various sections of code for ten particle effects. 95

Figure 5.29 Emission Failure Observation: A graph showing the time spent in

various sections of code for ten particle effects. 95

Figure 5.30 Emission Failure Solution Observation: A graph showing render ball

function calls over total maximum particles for a single particle effect. 98

Figure 5.31 Emission Failure Solution Observation: A graph showing particles

actually rendered over total maximum particles for a single particle

effect. 98

Figure 5.32 Emission Failure Solution Observation: A graph showing render ball

function calls over total maximum particles for ten particle effects. 99

Figure 5.33 Emission Failure Solution Observation: A graph showing particles

actually rendered over total maximum particles for ten particle effects. 99

Figure 5.34 Emission Failure Observation: A graph showing the number of sec-

tion calls for various sections of code for a single particle effect. . . 100

Figure 5.35 Emission Failure Observation: A graph showing the time spent in

various sections of code for a single particle effect. 100

Figure 5.36 Emission Failure Observation: A graph showing the number of sec-

tion calls for various sections of code for ten particle effects. 101

xvii

www.manaraa.com

Figure 5.37 Emission Failure Observation: A graph showing the time spent in

various sections of code for ten particle effects. 101

Figure A.1 An example of metadata output by the Metrics System. 106

Figure A.2 An example of the changing particle values during games in CSAPong.106

Figure A.3 An example of metrics output by the Metrics System based on

the metadata from Figure A.1. 108

Figure A.4 Shows the parameters that the generate particles.py script

can use. 110

Figure A.5 Shows the particle files that were generated by an invocation like in

Code Listing 23. 110

Figure A.6 Shows an example of Visual Studio’s generated call tree for CPU

instrumentation when ran using the metadata from Figure A.1. . . 111

Figure A.7 Shows the same call tree from Figure A.6, but sorted and filtered. . 111

Figure A.8 An example of timing output by the Timing System with just the

ParticleUpdateTask and the Particle Iteration times. 114

xviii

www.manaraa.com

1

CHAPTER 1 INTRODUCTION

Game engines can broadly be defined as frameworks that developers can use to create

games. Many engines include 2D and 3D rendering, sound effects, responsive user interfaces,

lighting, and cross-platform support. Some allow the developer to easily create games

through an editor via dragging and dropping, while others only offer a repository of code

to include as a library. A number of game engines also support the creation of particle

systems, or a collection of many particles that together represent an object without well-

defined surfaces. Some examples of particle systems are fireworks, snow, oceans, fire, and

smoke. ChilliSource, an open-source game engine written in C++, supports the creation

and usage of particle systems. Chapter 2 provides a more in-depth discussion on what

particle systems are, the structure of ChilliSource, and how particle systems fit into that

structure. This is discussed at great length in this thesis because the particle systems within

ChilliSource were studied and stressed with the goal of understanding a complex system and

exploring possible optimizations that could be made to it. An incomplete understanding

of particle systems, ChilliSource, and ChilliSource’s particle systems may have resulted in

poorly constructed optimizations, and that would have negatively impacted my studies.

In order to aide in stressing and instrumenting the ChilliSource engine, I created an

automated pong game. This automated game can run a series of ”games” where the ball

bounces around the arena without any user intervention. The various kinds of games differ

in the particle systems that are attached to the ball. For example, one game could have

an attached particle system that only emitted 10 particles every 2 seconds, while another

www.manaraa.com

2

game could have an attached particle system that emitted 1000 particles every 5 seconds.

When any given automated game reaches completion, it saves information (metrics) about

the games that ran. Some metrics include the number of particles that emitted or how long

the engine spent drawing particles. The metrics generated by the automated game drove

all of the studies that were performed. For example, metrics relating to how long certain

areas of code ran was primarily used in studies that focused on minimizing contention in

a large data structure. Chapter 3 explains how exactly these games were ran and directly

relates the produced metrics to the automated game, and this is essential to understand

because it provides a context to my studies and their results.

Chapters 4 and 5 cover the methods and results of the two kinds of studies that I per-

formed: optimization case studies and observation studies.

The optimization case studies chapter focuses on the methods and results of optimizing a

background task that updates information about each individual particle within a particle

system (e.g. current velocity, position, size, color, etc.). I sought to reduce contention

in a large data structure either by using multiple mutexes, data structure ”sharding”, or

hardware-based ”lock free” implementations.

The observation studies chapter, on the other hand, explores other aspects of Chill-

iSource’s particle system. The covered topics in these observation studies are the benefits

of encapsulating thread synchronization within a single object, the relationship between

ChilliSource’s task scheduler and its particle systems, and an interesting scenario in which

particles did not visually appear.

www.manaraa.com

3

CHAPTER 2 BACKGROUND

Figure 2.1: The particle effect created by William T. Reeves from the film Star Trek II: The Wrath of Khan

2.1 Particle Systems

2.1.1 Overview

Visual representation of ”fuzzy objects”, or objects without well-defined surfaces, in com-

puter graphics is generally considered a difficult task due to the non-deterministic changes

in the fuzzy object’s shape and form. When working on the film Star Trek II: The Wrath of

Khan, a researcher at Lucasfilm Ltd., William T. Reeves, developed what he called a par-

ticle system, which is ”... a collection of many minute particles that together represent a

fuzzy object. Over a period of time, particles are generated into a system, move and change

www.manaraa.com

4

Figure 2.2: Left: A cube emitting a stream of 1000 animated particles from 5 of its 6 faces. Right: A cube
emitting a stream of 1000 static particles, or strands, from 5 of its 6 faces

from within the system, and die from the system.” [1] Although the concept of modeling

these objects as a collection of particles was not novel, Reeves’ basic framework for particle

systems is still widely used today to create complex visual effects in video games and films.

Fuzzy objects like sparks, clouds, stars, water, and crowds of people can be easily trans-

lated and modeled as a particle system; particle systems can also be used to model objects

that contain numerous strands like hair and grass. These objects can be represented by

rendering every strand as the entire lifetime of a particle in the system and is then treated

as a single strand. The particles in a system that have a distributed lifetime (e.g. sparks)

are thought of as animated and particles that are rendered all at once (e.g. hair) are

thought of as static. For the duration of our own study, we have exclusively focused on

animated particles.

A solid understanding of how particle systems work and how ChilliSource operates was

essential in my development of optimizations for ChilliSource’s particle systems. Knowing

the attributes and events that are necessary to maintain a particle system guided what kinds

of changes that I could and could not make. Additionally, knowledge of ChilliSource’s

life cycle and architecture provided an essential context on how ChilliSource facilitates

communication between its particle systems, the user, and its renderer (i.e. a system that

www.manaraa.com

5

draws objects to the screen). This knowledge fueled the optimizations and the studies that

were performed in this thesis.

2.1.2 Reeve’s Particle Model

2.1.2.1 Life Cycle

A particle system has 4 main events that defines its life cycle:

1. Emission (or Generation, according to Reeves)

2. Update

3. Render

4. Death (or Extinction, according to Reeves)

The Emission event is the initial process in which particles are generated with their

initial values. Often a ”generation shape”[1] is used during the emission phase that defines

the two or three dimensional space that the particles can originate, or emit, from. Emission

can be increased or decreased in frequency using the emission rate, and the number

of particles that enter the particle system each emission can also be changed using the

particles per emission variable. After emission, particles in the particle system undergo

the Update and Render events. These events are repeated until the particle dies, or

undergoes the Extinction phase. The Update phase involves iterating over all particles

throughout the system and updating their attributes (e.g. position, velocity, etc.). The

Render phase, on the other hand, is the phase in which all of the particles are actually

drawn to the screen.

2.1.2.2 Particle Attributes

As mentioned above, each individual particle in a particle system will have attributes

that change over time. Although every particle system is different, the following is what

Reeves considered to be the core attributes of a particle:

� Position

www.manaraa.com

6

� Velocity

� Size

� Color

� Transparency

� Shape

� Lifetime

A particle has a position in two or three dimensional space, and its initial position is

determined by the emission process. Other attributes that may also change over time

include its speed, direction, size, color, and transparency. Its lifetime, however, is pre-

determined at emission, and it is the attribute that dictates how long the particle ”lives”,

or remains on the screen. In order to decrease uniformity and increase realism, all of these

values can vary across the particles in the system. For example, the particles in a given

particle system could have a varying lifetime of 5 to 10 seconds so that the particles that

shared an emission would not all die simultaneously.

2.1.2.3 Hierarchy

It is often convenient to design a particle system such that it is made up of a hierarchy of

child particle systems. This hierarchy ”can be used to exert global control on a complicated

fuzzy object that is composed of many particle systems.” [1] In other words, a fuzzy object

could easily be transformed in overall shape, size, color, etc. by descending into and trans-

forming its child particle systems. It also allows the grouping together of particle systems

that have different types of particles. For example, a campfire fuzzy object would need

smoke, sparks, and the flame itself. All of these components would have distinct particle

definitions and would be separate particle systems. A particle system hierarchy, in this

case, would allow the smoke, sparks, and flame particle systems to be bundled together as

a single fuzzy object.

www.manaraa.com

7

2.2 The ChilliSource Game Engine

2.2.1 Overview

Chosen for its open source and well-thought out architecture, ChilliSource is a free, open

source game engine created by ChilliWorks which is a group that is part of United Kingdom’s

Tag Games. It allows developers to create 2D and 3D content for iOS, Android, Kindle, and

Windows operating systems in C++ 11. Some of its key features include networking, shader

support, responsive (i.e. adaptive to different resolutions) graphical user interfaces, modular

and extensible lighting and shadows, skinned animation, Facebook connect integration,

consistent API, and automatic builds of iOS/Android/Kindle applications. [2]

2.2.2 Architecture

The structure of a ChilliSource application is primarily composition based in that it

relies on a hierarchy of modules to define its functionality. The modules comprising the

application are States, Systems, Entities and Components. Figure 2.3 demonstrates

the architecture of a ChilliSource application using these basic modules.

The Application instance initializes and manages Application Systems, which

are modules that describe functionality used across the entire application. A non-exhaustive

list of some application systems include the Task Manager, Texture Provider, Render

System, and the State Manager. The State Manager, as shown in Figure 2.3, man-

ages a stack of States and ensures that the state on top of the stack is active.

States can be thought of as different parts of the application such as a main menu,

inventory, settings menu, pause screen, and the game scene itself. States, like the

Application, initialize and manage State Systems. Similar to Application Systems,

State Systems describe functionality to be used by one state and only exist during that

state’s lifetime. The base State creates and manages the Canvas, Gesture, and user-

defined state systems. The Canvas renders the user interface, the Gesture state system

helps receive input events like pinching or tapping, and user-defined state systems are cus-

www.manaraa.com

8

Figure 2.3: The basic structure of a ChilliSource application

tom modules built by the developer to describe functionality for a state. An important

state system, the Scene, manages Entities that form that scene.

Entities are essentially objects within the game that are defined by both (a) a trans-

form describing their rotation, size, and position and (b) Components, which are modules

that describe the entity’s functionality. Some examples of Components are AI Controllers,

Health, Damage, and Physics. In addition to transforms and Components, Entities can

also contain a hierarchy of entities in which, much like in particle systems, their transforms

and life cycle events are linked by the hierarchy.

ChilliSource’s architecture favors composition over inheritance. For example, if we wanted

to create enemy and player Entities, we may be tempted to create a base Human Entity

www.manaraa.com

9

class that had health related methods and attributes. However, in order to truly adhere

to the spirit of ChilliSource’s design, we would create a Component with a name like

HealthComponent that could be attached to any single Entity. In this way, ChilliSource

lends itself to a great deal of code reusability and flexibility.

2.2.3 Life Cycle

The majority of game engines follow a life cycle very similar to the one for particle systems

that Reeves developed, which is:

1. Initialize

2. Update

3. Draw

4. Stop

The Initialize step usually involves loading textures, sounds, and anything else that the

engine needs to do before starting the main game loop. The Update step is the heart of

game, and is usually driven by some kind of state machine. Some examples of typical states

include Menu, Game, Settings, and Exit. The Draw step is also part of the main game

loop and, just as it sounds, this is where everything is drawn to the screen. Typically, there

is some kind of renderer that handles all of the low-level calls to the graphics card (e.g.

OpenGL, DirectX, etc.). Optionally, there is the Stop step in which the game has been

stopped and all assets and resources will be released. This may or may not be included as

a separate state in the Update phase, but it is good to logically separate the two events.

ChilliSource, as one may expect, adheres to the basic Initialize, Update, Draw, and

Stop phases. However, there are a great deal of other events that are perpetuated from

the Application instance. The following is a list of the main life cycle events that all

modules receive:

1. Init

www.manaraa.com

10

� This initializes the application and begins the Update event.

2. Update

� This updates the application, its systems, and the state manager’s states.

3. Render

� This renders objects and user interface elements to the screen and is the main

draw loop of the application.

4. Suspend

� This notifies active state(s) to pause and it suspends all systems in reverse order.

5. Resume

� This resumes the application from a suspended state.

6. Background

� This occurs when the application is not in view any longer.

7. Foreground

� This occurs when the application is in view again.

8. Destroy

� This cleans up the application and releases all systems in reverse order.

All of these events originate from the Application instance. The flow of events

looks something like Application → Application Systems (State Manager) →

States → State Systems (Scene) → Entities → Components. Figure 2.4 shows

what this flow looks like for the Update life cycle event using pseudocode. Note, however,

that each event means something slightly different depending on which module it is called

in (e.g. Update in the Application means something different than the Update in a

State). Additionally, there are a number of other events not discussed here that only have

meaning for specific modules (e.g. OnAddedToEntity for the Component module). See

[3] for more information.

The game developer is not limited to the main events that are automatically pushed

by the application. Custom events can also be created that are subscribed to by entities,

www.manaraa.com

11

components, and systems. When an object subscribes to a custom event, this object utilizes

a Connection to listen for the event it subscribed to. An Event can open, close, and

notify the Connections other objects have made to it. Some examples of custom events

are entity collisions, player death, cut scene trigger, game lost, game won, and so on.

2.3 ChilliSource Particle Effect Components

2.3.1 Overview

A special type of component in ChilliSource is the Particle Effect Component. It

inherits from the Render Component class 1, which is, just as it sounds, a component

that is rendered to the screen. Render Components have methods for visibility, culling,

casting shadows, and usage of both its transformation matrix and sort predicates. They also

have virtual methods that child classes can define for materials, transparency, rendering,

and bounding boxes. For the purpose of this study, however, a discussion of the Render

Component’s details is outside of scope. It is only necessary to know that the Particle

Effect Component is not only updated by its parent entity but also is rendered by the

Figure 2.4: An example of the Update life cycle event being perpetuated from the Application all the
way down to a Component

www.manaraa.com

12

Application’s renderer.

2.3.2 Architecture

2.3.2.1 Overview

The structure of a Particle Effect Component in ChilliSource is fairly complex.

Its composition includes a number of objects, primitives, and data structures, but we can

boil it down to 6 parts:

� A Particle Effect object

� A Particle Drawable object

� A Particle Emitter object

� A list of Particle Affectors (optional)

� A Concurrent Particle Data object

� An array of Particle structs

2.3.2.2 Particle Effect

The Particle Effect object contains all of the Properties and Definitions

for the effect. A Property defines a value that may be more complex than just a single

value. For example, a Property could be defined as a random value selected within a

certain range, a value that changes over the lifetime of the particle effect, or simply a con-

stant primitive value. Definitions, on the other hand, describe a number of properties

that should be used to create an object. The Properties and Definitions that the

Particle Effect contains include:

� The particle effect’s duration

� The total maximum number of particles used in the effect

1It’s important to note here that the version of ChilliSource that we are using is 1.6.0 and, at the time of writing
this paper, it is currently at version 2.0.0. In version 2.0.0, the rendering system is completely overhauled
and Particle Effect Components are Volume Components and not Render Components. This
new system was not studied and will not be discussed in depth here.

www.manaraa.com

13

Figure 2.5: The basic structure of a ChilliSource Particle Effect Component

� The space in which the particle effect is simulated (either ”local” or ”world”)

� The lifetime property of a new particle generated in the effect

� The initial scale property of a new particle generated in the effect

� The initial rotation property of a new particle generated in the effect

� The initial color property of a new particle generated in the effect

� The initial speed property of a new particle generated in the effect

� The initial angular velocity property of a new particle generated in the effect

� The particle effect’s drawable definition

� The particle effect’s emitter definition

� The particle effect’s affector definitions

These Properties and Definitions are used to create instances and values that will

be used by the Particle Effect Component. Thus, the contents of the Particle

Effect instance completely determines the behavior and appearance of the Particle

Effect Component. In order to create these intricate Particle Effects, a JSON

particle definition file like the one shown in Code Listing 1 must be utilized. Given the

length and verbosity of this file, it is easy to see that defining a particle effect by hand in

C++ would be undesirable.

Code Listing 1: An example ChilliSource particle definition file for a generic particle effect. Note how the
initial and changing-over-time (i.e. ”affector”) Properties can either be random values or constants.

www.manaraa.com

14

1 {
2 "Duration": "1.0",
3 "MaxParticles": "10000",
4 "SimulationSpace": "World",
5 "LifetimeProperty": {
6 "Type": "RandomConstant",
7 "LowerValue": "0.8",
8 "UpperValue": "1.2"
9 },

10 "InitialScaleProperty": {
11 "Type": "RandomConstant",
12 "LowerValue": "0.5 0.5",
13 "UpperValue": "1.2 1.2"
14 },
15 "InitialRotationProperty": "0.0",
16 "InitialColourProperty": "0.0 0.0 0.0 0.0",
17 "InitialSpeedProperty": "0.5",
18 "InitialAngularVelocityProperty": "0.0",
19 "Drawable": {
20 "Type": "StaticBillboard",
21 "MaterialPath": "Particle/Particle.csmaterial",
22 "AtlasPath": "TextureAtlases/Particle/Particle.csatlas",
23 "ImageIds": "Generic",
24 "Size": "1.0 1.0",
25 "SizePolicy": "FitMaintainingAspect"
26 },
27 "Emitter": {
28 "Type": "Cone",
29 "EmissionMode": "Stream",
30 "EmitFromType": "Inside",
31 "EmitDirectionType": "AwayFromBase",
32 "EmissionRateProperty": "100.0f",
33 "ParticlesPerEmissionProperty": "10000",
34 "EmissionChanceProperty": "1.0",
35 "RadiusProperty": "0.5",
36 "AngleProperty": "0.8"
37 }
38 "Affectors": [
39 {
40 "Type": "ColourOverLifetime",
41 "TargetColourProperty": "0.0 0.0 0.0 0.0",
42 "IntermediateColours": [
43 {
44 "ColourProperty": {
45 "Type": "RandomConstant",
46 "LowerValue": "0.9 0.4 0.12 0.0",
47 "UpperValue": "1.0 0.25 0.0 0.5"
48 },
49 "TimeProperty": "0.15"
50 },
51 {
52 "ColourProperty": {
53 "Type": "RandomConstant",
54 "LowerValue": "0.9 0.4 0.12 0.0",
55 "UpperValue": "1.0 0.25 0.0 0.5"

www.manaraa.com

15

56 },
57 "TimeProperty": "0.75"
58 }
59]
60 },
61 {
62 "Type": "ScaleOverLifetime",
63 "ScaleProperty": {
64 "Type": "RandomConstant",
65 "LowerValue": "0.75 1.5",
66 "UpperValue": "1.0 2.0"
67 }
68 }
69]
70 }

2.3.2.3 Particle Drawable

The Drawable object is responsible for rendering all of the particles that belong to

its Particle Effect Component. A Static Billboard Particle Drawable2,

which is a Drawable that renders each and every individual particle as camera facing

sprites, is used to accomplish this. The Drawable always renders particles on the main

game thread.

2.3.2.4 Particle Emitter

The Emitter object is used to spawn new particles during Emission. The Emitter

gets to decide the direction, location, and moment that a new particle emits. Unlike the

rendering that a Drawable does, the Emitter emits particles as a background task. There

are 5 different kinds of Emitters, and their differences lie in the ”generation”, or emission,

shape:

� Point Particle Emitter

– This emitter spawns particles at the parent entity’s position with a random

direction.
2As of version 1.6.0, the only Drawable type available to us is the Static Billboard, but the current
architecture suggests that there could be different types of Drawables in future versions.

www.manaraa.com

16

� Circle Particle Emitter

– This emitter spawns particles either within a circle or on the circle’s perimeter.

It can be set to emit particles with a random direction or a direction away from

the center of the circle.

� Sphere Particle Emitter

– Similar to the Circle Particle Emitter, this emitter spawns particles ei-

ther within a sphere or on the sphere’s surface. It can be set to emit particles

with a random direction or a direction away from the center of the sphere.

� Cone Particle Emitter

– This emitter spawns particles either within a cone or on the cone’s surface. It

can be set to emit particles with a random direction or a direction away from

the base of the cone.

� Cone 2D Particle Emitter

– This emitter spawns particles either within a 2D cone, on the 2D cone’s edges,

or at the 2D cone’s base. It can be set to emit particles with a random direction

or a direction away from the base of the 2D cone.

2.3.2.5 Particle Affector

A Particle Affector object applies an effect to all particles that change over time.

A Particle Effect Component can utilize zero or more Affectors, and, like the

Emitter, Affectors update particles in a background thread. There are 4 different

kinds of Affectors that can be applied:

� Scale Over Lifetime Particle Affector

– This affector changes the size of the particles over their lifetime by using a cal-

culated scale factor. This factor will be used to help interpolate the particle’s

size across updates.

� Color Over Lifetime Particle Affector

www.manaraa.com

17

– This affector changes the color of particles over their lifetime by using its initial

and target colors to generate interpolated colors across updates.

� Acceleration Lifetime Particle Affector

– This affector changes the speed of particles over their lifetime.

� Angular Acceleration Lifetime Particle Affector

– This affector changes the angular velocity of particles over their lifetime.

2.3.2.6 Particle Array

The Particle Array is a data structure that holds all of the particles that com-

prise the Particle Effect Component, and it is used by the Drawable, Emitter,

Affector, and Concurrent Particle Data instances. Each particle is represented

by a Particle struct, as shown in Code Listing 2. We can observe that the informa-

tion provided by this struct mirrors the particle attributes that Reeves used in his particle

systems.

Code Listing 2: The struct that is used to describe the properties of a particle within the Particle Array
in Particle Effect Component.

1 struct Particle final
2 {
3 bool m_isActive = false;
4 f32 m_lifetime = 0.0f;
5 f32 m_energy = 0.0f;
6 Vector3 m_position;
7 Vector2 m_scale = Vector2::k_one;
8 f32 m_rotation = 0.0f;
9 Colour m_colour = Colour::k_white;

10 Vector3 m_velocity;
11 f32 m_angularVelocity = 0.0f;
12 };

www.manaraa.com

18

2.3.2.7 Concurrent Particle Data

The Concurrent Particle Data object is a container for data that is shared by

the background and main threads. Concurrent Particle Data is written to by the

same background thread that emits and affects particles, and it is read by the Particle

Effect Component’s Drawable in the main thread. Essentially, it contains copies of

important attributes that these threads share. This includes an array of particles, in-

dices of particles that were just emitted, and the bounds of the particle effect. Thus, all

thread synchronization and locking occurs in Concurrent Particle Data and not in

the Particle Effect Component itself.

It is important to note that Concurrent Particle Data’s array of particles uses

a different struct than the one used in Particle Effect Component. As we can see

in Code Listing 3, the struct contains a subset of the information that is provided by

Particle Effect Component’s Particle struct. This is intentional, as information

that will be used by the Drawable later should only be copied.

Code Listing 3: The struct that is used to describe the properties of a particle within the Particle Array
in Concurrent Particle Data.

1 struct Particle final
2 {
3 bool m_isActive = false;
4 Vector3 m_position;
5 Vector2 m_scale = Vector2::k_zero;
6 f32 m_rotation = 0.0f;
7 Colour m_colour = Colour::k_white;
8 };

2.3.2.8 Other Important Attributes

There are a number of other important attributes that are not the 6 parts discussed

above. These include:

� Bounding box objects

www.manaraa.com

19

� Playback enumerators and floats

� Custom Events

The bounding box objects are containers that describe the effect’s shape and are used

to aide in the rendering of the effect. The playback enumerators- Playback Type and

Playback State- help describe whether or not the particle effect loops and the current

life cycle phase of the particle effect, respectively. The playback floats keep track of how

long the particle effect has been playing. The custom events that the effect uses are fired

off when the particle effect fully completes (i.e. no more particles are left alive) and when

a particle effect finishes emitting.

2.3.3 Life Cycle

2.3.3.1 Overview

The life cycle of a Particle Effect Component is very similar to the one developed

by Reeves, and it can be described as 4 main phases:

1. Initialization

2. Update

3. Render

4. Clean Up

2.3.3.2 Initialization Phase

During the Initialization phase, the Particle Effect Component creates the Drawable,

Emitter, Concurrent Particle Data, and, if specified by the Particle Effect

instance, its Affectors. It also creates the Particle Array and initializes the Bounding

Shapes.

www.manaraa.com

20

2.3.3.3 Update Phase

The Update phase uses 4 states to characterize the current playback state of the par-

ticle effect, which are Starting, Playing, Stopping, and Not Playing. During the

Starting state, particles are initialized to be inactive before it updates the particle effect

for the first time and enters the Playing state. The Playing state is when particles

are rendered and updated. During the Playing state, the particle effect may enter a

Stopping state if the playback timer exceeds the effect’s duration. However, it may re-

turn to a Playing state if active particles still remain within the Particle Array.

When the particle effect’s duration time has elapsed and no active particles remain, the

particle effect finally enters the Not Playing state and the particle effect no longer does

anything. The bulk of a particle effect’s time is spent during the Playing state, and that

is the state of the Update phase that will be focused on throughout this thesis.

Code Listing 4: The struct that is used to bundle all information needed by the background task performing
the particle update.

1 struct ParticleUpdateDesc final
2 {
3 ParticleEffectCSPtr m_particleEffect;
4 ParticleEmitterSPtr m_particleEmitter;
5 std::vector<ParticleAffectorSPtr> m_particleAffectors;
6 std::shared_ptr<dynamic_array<Particle>> m_particleArray;
7 ConcurrentParticleDataSPtr m_concurrentParticleData;
8 f32 m_playbackTime = 0.0f;
9 f32 m_deltaTime = 0.0f;

10 Vector3 m_entityPosition;
11 Vector3 m_entityScale;
12 Quaternion m_entityOrientation;
13 bool m_interpolateEmission = false;
14 };

When the particle effect is updating, it prepares a struct containing pertinent informa-

tion to hand over to a background task. This struct contains pointers to the Particle

Effect, Emitter, Affector(s), Particle Array, and Concurrent Particle

Data variables. Additionally, it holds some other miscellaneous information such as the

www.manaraa.com

21

effect’s parent entity’s position, scale, and orientation. The struct in its entirety is shown in

Code Listing 4. After it prepares the struct, it uses the Application Task Scheduler

application system to schedule a background task. This process is shown using pseudocode

in lines 1 - 11 in Code Listing 5.

As mentioned before in Section 2.3.2, the Particle Update Task updates particles

from the Particle Array, applies Affectors to the particles, emits particles using the

Emitter, calculates its new Bounding Shapes, and updates Concurrent Particle

Data with the new information. Lines 13 - 41 demonstrate these actions in Code Listing 5.

Code Listing 5: Pseudocode describing how a Particle Effect Component is updated by scheduling a
background task.

1 ParticleEffectComponent::OnUpdate()
2 {
3 // Get a struct containing copies (and pointers) to pass to the task
4 copiedAtts = CopyUpdateAttributes();
5

6 // Schedule a task to update the particle in the background
7 ApplicationTaskScheduler.ScheduleTask
8 ({
9 ParticleUpdateTask(copiedAtts);

10 });
11 }
12

13 ParticleUpdateTask(copiedAtts)
14 {
15 // Update particles if they are active
16 for(particle in copiedAtts.particleArray)
17 {
18 if(particle.isActive)
19 particle.UpdateValues();
20 }
21

22 // Apply affectors
23 for(affector in copiedAtts.particleAffectors)
24 {
25 affector.AffectParticles();
26 }
27

28 // Try to emit
29 newParticleIndicesArray = copiedAtts.particleEmitter.EmitParticles();
30

31 // Update bounding shapes
32 AABB, Sphere = CalculateBoundingShapes();
33

34 // Copy this updated data to the concurrent particle data object

www.manaraa.com

22

35 copiedAtts.particleConcurrentParticleData.CommitParticleData
36 (particleArray,
37 newParticleIndicesArray,
38 AABB, Sphere);
39 }

Code Listing 6 illustrates how the function, CommitParticleData, copies data from

the background task to the Concurrent Particle Data instance. The function copies

all of the particles in the Particle Array, and only a subset of information that is related

to drawing particles is copied per particle. It then appends the indices of the particles that

were just newly emitted to its member array, newParticleIndices. At the end of

the function, it copies the Bounding Objects. During all of this, the Concurrent

Particle Data instance is locked by locking a member variable mutex.

Code Listing 6: Pseudocode describing what CommitParticleData does when it copies its data to the
Concurrent Particle Data instance.

1 ConcurrentParticleData::CommitParticleData(particleArray,
2 newParticleIndicesArray,
3 AABB, Sphere)
4 {
5 // Lock the mutex for the scope of the whole function
6 using lock(this.mutex)
7 {
8 // Copy over all particles to the member particle array
9 for(i = 0 to particleArray.size())

10 {
11 this.particleArray[i] = particleArray[i].copySubset();
12 }
13

14 // Append the new indices to the member new indices array
15 this.newParticleIndices.append(newParticleIndices.copy());
16

17 // Copy the bounding information to the member variables
18 this.AABB = AABB.copy();
19 this.Sphere = Sphere.copy();
20 }
21 }

www.manaraa.com

23

2.3.3.4 Render Phase

Unlike the Update phase, the Render phase is not directly called by the Particle

Effect Component. Instead, it is called by the Renderer application system. The

Renderer retrieves the active scene from the State Manager, filters entities added to

the scene that have Render Components, and attempts to render them.

The Render function uses the Drawable instance to draw the Particle Effect

Component. The Drawable, in turn, uses Concurrent Particle Data to read the

information needed about the particle effect in order to render it. The Draw function within

the Drawable first locks the Concurrent Particle Data instance using a Lock func-

tion, and then proceeds to work with the copied data in Concurrent Particle Data.

It uses the newParticleIndices to register newly emitted particles to the Static

Billboard that is used for rendering, and continues on to iterate over the copied array

of particles in order to draw each particle that is currently active. When it is finished, it

unlocks the Concurrent Particle Data instance.

Code Listing 7: Pseudocode showing how a Particle Effect Component uses its Drawable to render
itself.

1 ParticleEffectComponent::Render(camera)
2 {
3 // Use the Particle Drawable to draw particles to the screen
4 if(this.playbackState is playing or this.playbackState is stopping)
5 this.drawable->Draw(camera);
6 }
7

8 Drawable::Draw(camera)
9 {

10 // Lock the Concurrent Particle Data object
11 this.concurrentParticleData.Lock();
12

13 // Activate the newly emitted particles in the static billboard
14 for(particleIndex in this.concurrentParticleData.GetNewParticleIndices())
15 {
16 ActivateParticleInBillboard(particleIndex);
17 }
18

19 // Iterate through all of the particles and draw each one
20 DrawParticles(this.concurrentParticleData.GetParticleArray(), camera);
21

www.manaraa.com

24

22 // Unlock the Concurrent particle Data object
23 this.concurrentParticleData.Unlock();
24 }

2.3.3.5 Clean Up Phase

Of all phases, this is one is by far the simplest. It releases all resources and clears allocated

arrays. Specifically, it cleans up the Particle Array, the Concurrent Particle

Data instance, the Drawable instance, the Emitter instance, and the array of Affectors.

2.3.4 Usage

Creating a basic scene that uses a Particle Effect Component in ChilliSource

is fairly simple. As Code Listing 8 illustrates, it requires that we first create a camera

along with a light source and add them both to the current State’s Scene. Utilizing

ChilliSource’s API to create an entity is easy to use and understand, as Code Listing 9

demonstrates3. The Basic Entity Factory used in Code Listing 8 is not built-in to

ChilliSource, and it was created to abstract the creation of entities like rooms, lights, and

cameras.

Code Listing 8: Creating a scene that adds a basic Particle Effect Component in ChilliSource.

1 void State::OnInit()
2 {
3 // Retrieve the resource pool application system to create a particle effect
4 // Set the state's current scene's clear color to black
5 GetScene()->SetClearColour(CS::Colour::k_black);
6

7 // Retrieve a state system that will help create basic entities like
8 // cameras, rooms, and lights.
9 auto basicEntityFactory = CS::Application::Get()

10 ->GetSystem<Common::BasicEntityFactory>();
11

12 // Create a basic room and add it to the scene
13 CS::EntitySPtr room = basicEntityFactory->CreateRoom();

3This is the only time within this paper that pseudocode will not be used. Since we are demonstrating how
to use and create a Particle Effect Component, it seemed appropriate to show the code verbatim.

www.manaraa.com

25

14 room->GetTransform().SetPosition(0.0f, 10.0f, 0.0f);
15 GetScene()->Add(room);
16

17 // Create a third person camera and add it to the scene
18 auto camera = basicEntityFactory
19 ->CreateThirdPersonCamera(room, CS::Vector3(0.0f, -9.0f, 0.0f));
20 GetScene()->Add(std::move(camera));
21

22 // Create an ambient light and add it to the scene
23 CS::EntitySPtr ambientLight = basicEntityFactory
24 ->CreateAmbientLight
25 (CS::Colour(0.65f, 0.65f, 0.65f, 1.0f));
26 GetScene()->Add(ambientLight);
27

28 // Create a particle effect entity and add it to the scene
29 auto particleEntity = CreateParticleEffect();
30 GetScene()->Add(std::move(particleEntity));
31 }

Code Listing 9: The function to create an ambient light with the Basic Entity Factory state system.

1 CS::EntityUPtr BasicEntityFactory::CreateAmbientLight
2 (const CS::Colour& in_colour)
3 {
4 // Use the application system, Render Component Factory, to create an
5 // ambient light.
6 auto ambientLightComponent = m_renderComponentFactory
7 ->CreateAmbientLightComponent(in_colour);
8

9 // Create an entity, and attach the ambient light component to it.
10 auto entity = CS::Entity::Create();
11 entity->AddComponent(ambientLightComponent);
12

13 // Return the entity
14 return entity;
15 }

Once we’ve added a room, lighting, and a camera to our scene, we create a particle effect

entity using a function called CreateParticleEffect. The exact code inside of this

function is shown in Code Listing 10. Inside of this function, we use the main Application

instance to generate a Particle Effect from a csparticle file, and it accomplishes this

by using a Resource Pool application system. Once we have a Particle Effect,

we can use a Render Component Factory application system to create a Particle

www.manaraa.com

26

Effect Component using the newly created Particle Effect. Lastly, we must add

the Particle Effect Component to an entity and add that entity to the current state’s

scene.

Code Listing 10: Creating a basic particle effect component with ChilliSource.

1 CS::EntityUPtr State::CreateParticleEffect()
2 {
3 // Retrieve the singleton application instance through a static method
4 auto app = CS::Application::Get();
5

6 // Retrieve the resource pool application system to create a particle effect
7 // from a JSON csparticle file
8 auto resourcePool = app->GetResourcePool();
9 auto particleEffect = resourcePool

10 ->LoadResource<CS::ParticleEffect>
11 (CS::StorageLocation::k_package,
12 "Particle/generic.csparticle");
13

14 // Using a render component factory application system and the particle
15 // effect, create a particle effect component
16 auto renderComponentFactory = app->GetSystem<CS::RenderComponentFactory>();
17 auto particleComponent = renderComponentFactory
18 ->CreateParticleEffectComponent(particleEffect);
19

20 // Set the particle component's playback to looping
21 particleComponent
22 ->SetPlaybackType(CS::ParticleEffectComponent::PlaybackType::k_looping);
23

24 // Create an entity, and add the particle component to the entity
25 auto particleEntity = CS::Entity::Create();
26 particleEntity->AddComponent(std::move(particleComponent));
27

28 return particleEntity;
29 }

Compared to Reeves’ particle systems, we can observe here that a Particle Effect

Component is not composed of a hierarchy of child Particle Effect Components.

As mentioned in Section 2.2.2, however, Entities are composed of Components and

child Entities. Thus, ChilliSource’s architecture allows the developer to create parent

and child Particle Effect Components by nesting Entities.

www.manaraa.com

27

CHAPTER 3 THE CHILLISOURCE AUTOMATED PONG GAME

3.1 Overview

The ChilliSource Automated Pong Game [4] (i.e. CSAPong) is the application that I

built to aide in studying ChilliSource’s Particle Effect Components. CSAPong is a

derivative of CSPong [5], a simple pong game created with ChilliSource that was developed

by the ChilliWorks team. CSPong was built to illustrate as much of the engine as possible

without creating a complex game, and the three main states attempt to reflect this goal.

These states include the Splash State, the Main Menu State, and the Game State.

These states demonstrate the engine’s life cycle events, creation and utilization of custom

state systems and custom events, usage of the UI app system and the State Manager,

and, most importantly, how to design entities and components to add enemy AI, player

interaction, physics, collision detection, and so on. All three states are shown in Figure 3.1.

Unlike CSPong, CSAPong only uses a single state, the Game State. The main appli-

cation instance restarts the Game State a number of times, and it automatically quits

the application when it’s finished. CSAPong does not have enemy AI or player interaction

(i.e. enemy and player paddles), but the walls do collide with the ball and keep track of the

”score”. Additionally, CSAPong attaches a Particle Effect Component to the ball

that will emit particles as the ball moves around the arena. Figures 3.3, 3.4, and 3.5 show

a variety of examples of CSAPong in action. These examples are explained in more detail

later on in this chapter.

www.manaraa.com

28

Figure 3.1: The above screenshots illustrate the original pong game. The screenshots were taken from
the beginning of the application to the first goal. The top-left screenshot is from the Splash State, the
top-right screenshot is from the Main Menu State, and the other three screenshots are from the Game
State.

3.2 Architecture

3.2.1 Overview

Although it is not necessary to go over every single class that makes up CSAPong, it is

essential to understand its general architecture. As shown in Figure 3.2, we can broadly

describe the structure having two main parts, the ChilliSource engine1 and the CSAPong

application itself. Further, CSAPong can be defined as having Application Systems,

a Game State, and the Game State’s State Systems.

1Obviously, we know that the entirety of the ChilliSource engine is part of the CSAPong application, but we
will include it in our discussion of CSAPong’s architecture due to the custom application systems that we
created within ChilliSource specifically for CSAPong.

www.manaraa.com

29

Figure 3.2: The basic architecture of the automated pong game. This shows CSAPong having a
Particle Effect Component Factory App System, a Game Entity State System, a Physics
State System, a Scoring State System, and the Game State itself. Although the entirety of the
ChilliSource engine is used in CSAPong, this graph highlights the custom Profiling Systems within
ChilliSource that I created for the purposes of instrumenting Particle Effect Components.

3.2.2 CSAPong Application

The CSAPong Application instance creates all application systems that will have

a lifetime lasting throughout the whole application. This includes Particle Effect

Component Factory and Profiling application systems, where the former is defined

within CSAPong and the latter is defined within ChilliSource itself. It also handles pushing

the initial Game State, restarting the Game State, and quitting the application.

3.2.3 Application Systems

Although not explicitly part of CSAPong, the Profiling Application Systems

are integral to our studies. They are application systems I created that help keep track of

engine-specific metrics such as particles per emission, particles actually emitted, particles ac-

tually rendered, time spent in ParticleUpdateTask, time spent in CommitParticleData,

and so forth. The Profiling Application Systems are discussed in more detail in

Appendix A.

www.manaraa.com

30

The Particle Effect Component Factory Application System generates

Particle Effect Components and attaches them to entities. The user can pass it an

entity, a csparticle file path, and the number of desired Particle Effect Component(s)

to add, which it uses to add the desired Particle Effect Component(s) to the entity.

This application system was used to generate different kinds of particle effects as CSAPong

ran.

3.2.4 Game State

The Game State manages the game’s life cycle, its entities and components, and its

user interface. Similar to the main application instance, the Game State creates all state

systems that will have the same lifetime as the state. It uses the Game Entity Factory

State System on initialization to create a camera, some lighting, the arena, and the

ball. The Game Entity Factory, in turn, uses the Particle Effect Component

Factory to attach particle effects to the ball during that ball’s creation. It also signals the

Profiling Application Systems to start gathering metrics once the Game State

is fully initialized and has started the game.

3.2.5 State Systems

The Physics State System handles the movement of dynamic bodies (such as the

ball) and collision checking. This behavior is described with components that are attached

to entities which is in the spirit of ChilliSource’s composition-based design. Thus, if we want

the ball to be able to move, we attach a special type of component to the ball, a Dynamic

Body Component, which is used by the Physics State System. Additionally, if we

want collisions to occur between dynamic bodies and the walls, we must add static body

components to the four wall entities within the arena.

The Scoring State System uses the collision detection in the Physics State

System to trigger points being added to each ”opposing team”. As we can see in Fig-

www.manaraa.com

31

ure 3.3, however, there is a small bug in which 2 points are awarded each time the ball

collides with the wall. The bug did not interfere with studying the Particle Effect

Component, and so time was not taken to fix it.

3.3 Gameplay

3.3.1 Logistics

The gameplay can be described as a series of ”games” where the ball begins at the

center of the arena, accelerates toward the bottom right corner, bounces to the right-most

wall, bounces to the center of the top wall, and heads toward the center of the left-most

wall. Although the game can continue for longer than this, the majority of our studies set

the ”game length”, or run time, to 5 seconds, and so this is the most frequent behavior

observed. This ball path was specifically chosen to minimize the number of particles that

would overlap each other during a game in order to challenge the engine to render as many

particles as possible. If the particles did overlap, then those particles would be culled, or

not drawn, resulting in the engine working less intensively.

Another variable that can be changed is the number of ”games”, or the maximum run

number, that will be ”played”. The game has the ability to change particle effect types

during execution, and so the maximum run number is the number of games that are ran

for each particle effect type that we want to use. For example, if we had 3 different particle

effect types and the maximum run number was set to 3, then we would expect to see 9

games played in total.

When the ”game” is over, the CSAPong Application instance destroys the current

Game State and creates a new Game State with the same kind of particle effect type

until it reaches the maximum run number. The application will then either create a new

Game State with the next particle effect type or quit the application if there is not another

particle effect type to ”play”. Once the application has finally quit, a series of files within

a timestamped folder will be placed in the application’s save data. These files contain the

www.manaraa.com

32

instrumentation information, and we will learn more about them later on in this chapter.

3.3.2 Examples

Particle effects, as we found in the previous chapter, are complicated and have many

changing variables that influence their behavior. Although many of these variables were

changed during our studies, the different scenarios encountered can be generalized as the

following:

� No particles emitting during the game

� A single, giant burst of particles emitting during the game

� Multiple bursts of particle emissions during the game

Figures 3.3, 3.4, and 3.5 show screenshots of these three different scenarios. The variables

and configurations that drive these three scenarios are complex, (and are explained in fine

detail in Appendix A), but it is important to understand the three basic variables that

define these particle effects:

� Particle Min, Max, and Step

– These are values that determine the PPE and TMP over the course of a series

of games. These help the automated game create particle effects of varying PPE

and TMP over time as the series of games run. These variables do not change

as the series of games are ran.

� Particles Per Emission (or PPE)

– The number of particles that will emit from the particle effect during each emis-

sion event. This changes as the series of games are ran.

� Total Maximum Particles (or TMP)

– The pool of particles that the particle effect owns. In more technical terms, this

is the size of the Particle Effect Component’s Particle Array. This

changes as the series of games are ran.

In order to more concretely understand how these variables work, let us consider examples

www.manaraa.com

33

Figure 3.3: A series of screenshots showing the automated game with no particles. The screenshots were
taken 1 second apart with the ball starting at the beginning of the arena.

for the single-giant-burst and multiple-burst scenarios2.

The single-giant-burst scenario would always have PPE equal to TMP. In other words,

the particle effect emits all of the particles that it has at once. An example of values for

the above variables that would apply to this scenario would be:

� Particle Min, Max, and Step

– Min: 500

– Max: 2000

– Step: 500

� Particles Per Emission

– First game: 500

2The first scenario’s variables are trivial; the PPE, TMP, and particle min/max/step would all be 0.

www.manaraa.com

34

Figure 3.4: A series of screenshots showing the automated game with a single, giant burst of particles. The
screenshots were taken 1 second apart with the ball starting at the beginning of the arena.

– Second game: 1000

– Third game: 1500

– Fourth game: 2000

� Total Maximum Particles

– First game: 500

– Second game: 1000

– Third game: 1500

– Fourth game: 2000

The multiple-burst scenario would have the PPE be a fraction of the TMP. In other

words, the particle effect emits all of its particles over time. If PPE was 10% of TMP, then

the values for the main variables would be:

www.manaraa.com

35

Figure 3.5: A series of screenshots showing the automated game with multiple bursts of particle emissions.
The screenshots were taken 1 second apart with the ball starting at the beginning of the arena.

� Particle Min, Max, and Step

– Min: 500

– Max: 2000

– Step: 500

� Particles Per Emission

– First game: 50

– Second game: 100

– Third game: 150

– Fourth game: 200

� Total Maximum Particles

– First game: 500

www.manaraa.com

36

– Second game: 1000

– Third game: 1500

– Fourth game: 2000

In addition to keeping track of these variables, information (or metrics) about the Particle

Effect Components are gathered during the game. Particle metrics describe informa-

tion such as the number of times every particle was drawn and the number of emissions

that were made. Timing metrics, on the other hand, describe how long different sections of

code take. The following is a list of the two important particle metrics that are most often

used in my results:

� Render ball function calls

– This describes the number of times that the ball itself was rendered. It serves

as a way to gauge how visually smooth (or how many frames are processed) the

game is running.

� Particles actually rendered

– This shows how many times every single particle across all particle effects are

rendered. This also serves as a way to gauge how visually smooth the game is

running.

A higher value for both render ball function calls and particles actually rendered indicate

better performance. This is because, when more particles are rendered or the ball is rendered

more often, the game appears to run more smoothly. Or, in other words, the ”frames per

second” improves.

It is unnecessary to know more than the above metrics and variables to understand the

results of this thesis, but Appendix A provides much more detail for those who are motivated

to learn more.

www.manaraa.com

37

3.4 Initial Results

A variety of these automated games were run and their outputs were examined on Win-

dows, iOS, and Android platforms. This was done in an effort to find an area within

the Particle Effect Component class that needed optimization. In the beginning of

these studies, the only available datasets were from the Metrics System and the Visual

Studio CPU sampling profiles, as the timing instrumentation was still not complete (see

Appendix A for more information). I observed that a particular automated game in which

the total maximum particles and particles per emission values were the same3 caused the

game to visually lag, or skip frames. Armed with only the metrics information and CPU

sampling (see Figure 3.6), all that was known was that the following Particle Effect

Component methods had a considerable number of samples:

� ParticleDrawable::DrawParticles

� ParticleUpdateTask

� ParticleAffector::AffectParticles

Given that these three methods were run repeatedly throughout the games, these results

were unsurprising. At the time, it was tempting to pursue ParticleUpdateTask since

it iterated over the entire particle array multiple times. I thought that, perhaps, creating

a cache-friendly data structure that kept track of active particles would be a good initial

optimization. However, as it shows in Figure 3.8, the functions that iterate over all of the

particles were only taking (1.0 + 1.7 + 12.0 + 0.6)/48.4 ≈ 32% of ParticleUpdateTask’s

time. The CommitParticleData function, on the other hand, was taking 31.5/48.4 ≈

65% of ParticleUpdateTask’s time, and 29.4 of those 31.5 seconds were spent waiting

for a lock to release. Thus, it is clear that, in this case, ParticleUpdateTask’s bottleneck

was CommitParticleData.

These initial results not only demonstrated a possible place to optimize, but it also rein-

forced the importance of backing up possible optimizations with data in order to avoid opti-

3Specifically, total maximum particles and particles per emission were 10,000 in Figures 3.6, 3.7, and 3.8.

www.manaraa.com

38

Figure 3.6 A Visual Studio call tree sourced from the games based on the metadata in Figure 3.7. The
function call tree level is ≥ 8, the function names begin with ”ChilliSource::”, the inclusive samples
% are ≥ 6%, and it is sorted by the inclusive samples % in descending order. These parameters
were used to ensure that the results were low-level ChilliSource function calls with a high inclusive
sample percent. The functions with the most inclusive samples are either related to rendering or
updating particles.

Figure 3.7 Metadata of a series of
games that demonstrated contention in
CommitParticleData. The impor-
tant part to understand here is that
these games are similar to the scenario
in which there are a single, giant burst
of particles. In other words, the parti-
cle effect emits all of the particles that
it has at once. We also know that
it only performs this for 10,000 par-
ticles since the min particles and
max particles values are the same.

Figure 3.8 Timing output based on the metadata in Fig-
ure 3.7. The important timing sections to focus on are Par-
ticleUpdateTask CommitParticleData and ParticleUpdate-
Task CommitParticleData Lock. The former shows 31.55
seconds, and the latter shows 29.39 seconds. This tells us
that the CommitParticleData function spent about 29
of its 32 seconds waiting for a lock to release.

www.manaraa.com

39

mizing into a vacuum. Without the timing data, I could have easily gone forward with opti-

mizing particle iteration instead of focusing on the contention in CommitParticleData,

and that would have been a waste of time.

www.manaraa.com

40

CHAPTER 4 CHILLISOURCE PARTICLE EFFECT COMPONENT

OPTIMIZATION CASE STUDIES

4.1 Counting Contention

From the initial results in the previous chapter, we found that CommitParticleData

experienced a great deal of contention. Figure 3.8 showed that, of the 31.5 seconds that

CommitParticleData took, 29.4 seconds was spent waiting for a lock to release. It can

be inferred, then, that it only needed about 2 seconds to do any meaningful work and, if

this contention could be reduced, then that function could be drastically sped up.

The results of the following studies demonstrated the differences between managing con-

Figure 4.1: The results of ”counting the contention” between the background and main threads in
Concurrent Particle Data. This data shows that the updating thread in CommitParticleData
is waiting for the drawing thread to release the locked resource. The majority of these functions are either
accessors/mutators or the CommitParticleData function itself, but the roles of the Lock and Unlock
functions are a little enigmatic. Concurrent Particle Data only has a single mutex that is used be-
tween the drawing and updating threads and, since the drawing thread does not have direct access to
Concurrent Particle Data’s mutex, the Lock and Unlock functions are there to lock and unlock the
mutex in question.

www.manaraa.com

41

tention for a single, large data structure and for many pieces or ”shards” of a fragmented

data structure. I found that ChilliSource’s Particle Effect Component was likely to

have contention between the background and main threads (the threads that update parti-

cles and draw particles, respectively) for a single particle effect. For many particle effects,

however, there was less contention between the background and main threads since the

particles were distributed (or ”sharded”) across many Particle Effect Components

and the main thread had a smaller chance of contending for a given effect’s particle array.

The first step in reducing this contention for these case studies was knowing for certain

what was making the background thread in CommitParticleData wait. The simplest

way to ascertain what was causing the contention was to do some counting. In Concurrent

Particle Data, an atomic thread counter was used to keep track of how many

threads were contending for resources. This thread counter was incremented right

before a thread attempted to gain access to a lock, and it was decremented right before

it relinquished access to that lock. The IncrementCounter and DecrementCounter

methods printed a message when the thread counter was greater than one. During incre-

mentation, a thread counter that was greater than one meant that the current thread

was waiting to retrieve the lock. During decrementation, a thread counter that was

greater than one meant that another thread was waiting for the current thread to release

the lock. Since only one background thread was scheduled, we know that the thread

counter should never be greater than two.

This ”contention counting” was done using the same metadata from Figure 3.7 in my

initial results, and the data collected can be found in Figure 4.1. The functions in which

either the background or main threads waited for a lock to release were StartUpdate1 (301

times), Lock (1 time), and CommitParticleData (521 times). The functions in which

the background or main thread had the other thread waiting for a lock to release were

Unlock (521 times) and CommitParticleData (302 times). These results illustrated

that StartUpdate and Lock were waiting on CommitParticleData since 301+1 = 302,

www.manaraa.com

42

and that CommitParticleData was waiting on Unlock since their counts were both 521.

With these results in mind, recall from Section 2.3.3 that the Lock function was used by

the Particle Drawable when drawing particles in order to lock ConcurrentParticleData

and secure access to the particle array. The Particle Drawable is the only class that

uses this Lock function. The Particle Drawable reads information from Concurrent

Particle Data’s particle and new particle indices array. Thus, I inferred that it was un-

necessary to lock both of those data structures at once and, instead, more than one mutex

in the CommitParticleData and Draw functions could be used in an attempt to reduce

the contention that we observed in our initial results shown in Figure 3.8.

4.2 Using More Than One Mutex

4.2.1 Code

The changes needed to add mutexes for the two data structures and remaining variables

that were copied were fairly minimal. particlesMutex, newParticlesIndicesMutex,

and the normalMutex were added as member variables to Concurrent Particle Data.

Each of these mutexes were locked when their respective variables needed to be read or

written to. When a mutex was locked within Concurrent Particle Data, it was done

by directly accessing the mutex (see Code Listing 11). When a mutex was locked within

the Particle Drawable, it was done by utilizing special locking functions2 provided by

Concurrent Particle Data (see Code Listing 12).

One of the potential issues with these changes was that, even though a particle may

currently be active, it may not be available for rendering by the time the DrawParticles

function was called. To more concretely explain, imagine that the Particle Drawable

1Although not a part of the pseudocode provided for the ParticleEffectComponent::OnUpdate method
in earlier chapters, this simple function merely lets the caller know whether or not particle data has been
committed since the last time it was called.

2In actuality, a single locking function was used. An enumerator was passed to the function specifying which
mutex needed to be locked. Although this was better practice, it obfuscated the actual meaning of the code
by making it more verbose. Thus, a tidier version without the enumerators are used here.

www.manaraa.com

43

Figure 4.2 Illustrates how all of Concurrent
Particle Data’s member variables are locked
when their values are either being updated by a
background thread in CommitParticleData or
read from by the main thread in Draw. These
member variables include the particle array, the
new particle indices array, and the bounding infor-
mation. In this figure, the latter variables are ab-
stracted as ”rendering objects” for simplicity and
to emphasize that the most important variable to
consider is the particles array. This is because the
background (i.e. updating) and main (i.e. ren-
dering) threads contend for the particles array the
most out of all of the member variables.

Figure 4.3 Illustrates how the particles array and
the rendering objects are given separate mutexes
for the more than one mutex case study. As
stated in Figure 4.2, the particles array is em-
phasized in this figure because it is contended for
the most out of all of the member variables in
ConcurrentParticleData.

was taking in new particle indices to activate within the static billboard to make it available

for rendering. At the same time, CommitParticleData was copying new particle data

and there happened to be newly emitted particle indices. Since the Particle Drawable

had old information that did not include these newly emitted particles, these new particles

would not be rendered because, even though they were marked as active, they were not

activated in the static billboard. An example of this behavior is shown in Figure 4.4.

Although this sounds like a significant problem, it can be argued that the inconsistent state

cannot possibly be perceived by the user since a considerable number of updates happen

within a short span of time. If we look at Figure 4.8, for example, the number of calls to the

www.manaraa.com

44

Figure 4.4: Illustrates the relationship between locking two mutexes between the drawing and updating
threads over the lifetime of a particle effect. This shows how active particles in the particle array may not
be rendered immediately because they were not activated in the Drawable’s billboard before rendering.
This can happen if the ”updating particles” thread is holding the particles lock and copying particles
in CommitParticleData while the Drawable is clearing and activating ”old” new particle indices from
CommitParticleData. The array does not contain the ”new” particle indices from the most recent update
because those are not copied until after the particles mutex is released, as shown in Code Listing 11. It
is important to emphasize that, every time a set of particle indices were ignored during rendering, it was
because it was not in the Drawable’s billboard, and this is shown above.

Draw function was about 800, and that was within approximately a 20 runs∗5 seconds/run =

100 second timespan. This meant that this function was called about 8 times per second,

and it is highly doubtful that a person could notice the inconsistent state of the particle

effect within 1/8th to 1/4th of a second. Thus, the temporary inconsistent state was not

considered a problem.

Code Listing 11: Pseudocode illustrating the changes needed to utilize more than one mutex in the
CommitParticleData function. Note that, instead of locking only one mutex, three different mutexes
were locked at different times depending on the resource needed (i.e. the particles array, the new particle
indices array, or the non-data structure array).

1 ConcurrentParticleData::CommitParticleData(particleArray,
2 newParticleIndicesArray,

www.manaraa.com

45

3 AABB, Sphere)
4 {
5 // NEW -> Lock the particles mutex
6 using lock(this.particlesMutex)
7 {
8 // Copy over all particles to the member particle array
9 for(i = 0 to particleArray.size())

10 {
11 this.particleArray[i] = particleArray[i].copySubset();
12 }
13 }
14

15 // NEW -> Lock the new particle indices mutex
16 using lock(this.newParticleIndicesMutex)
17 {
18 // Append the new indices to the member new indices array
19 this.newParticleIndices.append(newParticleIndices.copy());
20 }
21

22 // NEW -> Lock the normal (non-data structure) mutex
23 using lock(this.normalMutex)
24 {
25 // Copy the bounding information to the member variables
26 this.AABB = AABB.copy();
27 this.Sphere = Sphere.copy();
28 }
29 }

Code Listing 12: Pseudocode illustrating the changes needed to utilize more than one mutex in the Draw
function. Note that, instead of locking only one mutex, two different mutexes were locked at different times
depending on the resource needed (i.e. the particles array or the new particle indices array).

1 Drawable::Draw(camera)
2 {
3 // NEW -> Lock the particle new indices array
4 this.concurrentParticleData.LockNewParticleIndices();
5

6 // Activate the newly emitted particles in the static billboard
7 for(particleIndex in this.concurrentParticleData.GetNewParticleIndices())
8 {
9 ActivateParticleInBillboard(particleIndex);

10 }
11

12 // NEW -> Unlock the particle new indices array
13 this.concurrentParticleData.UnlockParticleIndices();
14

15 // NEW -> Lock the particles array
16 this.concurrentParticleData.LockParticles();
17

18 // Iterate through all of the particles and draw each one
19 DrawParticles(this.concurrentParticleData.GetParticleArray(), camera);
20

21 // NEW -> Unlock the particles array
22 this.concurrentParticleData.UnlockParticles();

www.manaraa.com

46

23 }

4.2.2 Results

Figure 4.5: The metadata used for the 8 series of automated games for the case studies.

The following four figures are the result of running a series of automated games in two

scenarios:

1. Scenario used for particle metrics (Figure 4.6 and Figure 4.7)

� Min: 0

� Max: 50,000

� Step: 5,000

� Each game was 5 seconds long

� This scenario ran when particles per emission (PPE) was 10% and 100% of

total maximum particles (TMP) or, in other words, when the particle effect had

multiple-bursts and a single burst.

2. Scenario used for timing metrics (Figure 4.8 and Figure 4.9)

� Min: 50,000

www.manaraa.com

47

� Max: 50,000

� Each game was 5 seconds long

� This scenario ran when particles per emission (PPE) was 10% and 100% of

total maximum particles (TMP) or, in other words, when the particle effect had

multiple-bursts and a single burst.

When examining these results3, the yellow ”Original 0.1 TMP” series should be directly

compared with the blue ”> 1 Mutex 0.1 TMP” series and the orange ”Original 1.0 TMP”

series should be directly compared with the green ”> 1 Mutex 1.0 TMP” series. This is

because comparing the two series that ”played the same game” will yield more accurate

conclusions than cross-comparisons would.

4.2.3 Discussion

The figures that focus on the particle metrics render ball function calls and particles

actually rendered (Figures 4.6 and 4.7) do not exhibit a great deal of improvement from the

original. For both of those figures, improvement would mean higher values. This is because,

when more particles are rendered or the ball is rendered more often, the game appears to

run more smoothly. Or, in other words, the ”frames per second” improves.

The figures focusing on the particle timing, on the other hand, show considerable im-

provement (Figures 4.8 and 4.9). For 0.1 TMP, CommitParticleData went down from

47 seconds to 24. For 1.0 TMP, CommitParticleData went down from 50 seconds to 31.

This was approximately a 40% increase in speed!4However, there was still a large amount

of contention for the particle array. For 0.1 TMP, 19 of those 24 seconds was spent waiting

for the particle array’s mutex to unlock. For 1.0 TMP, 29 of those 31 seconds was spent

waiting for the particle array’s mutex to unlock. It was clear, then, that more must be done

to reduce contention for the particle array. Instead of adding more mutexes, one could be

taken away.

3All of the results presented in this thesis can be found in an HDF5 file hosted on a Bitbucket repository [6].
4See Figure 4.24 in Section 4.4 for a summary table of these timed sections.

www.manaraa.com

48

Figure 4.6 A graph showing render ball function calls over total maximum particles for a single
particle effect. This shows that changing Concurrent Particle Data to use multiple mutexes
does not impact the number of times that the ball is rendered. The multiple-burst and single-burst
(0.1 and 1.0 TMP, respectively) scenarios for the > 1 Mutex data series are almost the same as the
ones for the data series without any changes to the source code (i.e. the Original data series).

Figure 4.7 A graph showing particles actually rendered over total maximum particles for a single
particle effect. This shows that changing Concurrent Particle Data to use multiple mutexes
also does not impact the number of times that particles are rendered. As in Figure 4.6, the > 1
Mutex data series is almost the same as the ones for the data series without any changes to the
source code (i.e. the Original data series).

www.manaraa.com

49

Figure 4.8 A graph showing the number of section calls for various sections of code for a single
particle effect. Note that the ”ParticleUpdateTask CommitParticleData Lock” section is timing the
particle array lock for the > 1 Mutex data series. This shows that, between the > 1 Mutex and
Original data series, the drawing functions had approximately the same number of section calls. The
Original data series for the particle update functions, however, show more calls.

Figure 4.9 A graph showing the time spent in various sections of code for a single particle effect.
Note that the ”ParticleUpdateTask CommitParticleData Lock” section is timing the particle ar-
ray lock for the > 1 Mutex data series. The > 1 Mutex data series shows improvement in the
CommitParticleData function from the Original. For 0.1 TMP, CommitParticleData went
down from 47 seconds to 24. For 1.0 TMP, CommitParticleData went down from 50 seconds to
31. This was approximately a 40% increase in speed.

www.manaraa.com

50

Figure 4.10: Shows the particle array with a mutex for every particle element (left) and with an atomic
variable for every particle element (right). The former scenario could greatly hinder performance since
mutexes have a considerable amount of overhead [7]. The latter scenario, however, transforms the particle
array into a lock free data structure. This data structure has the benefit of updating and rendering threads
simultaneously accessing the particle array without the overhead of mutexes.

4.3 Using A Lock Free Data Structure

Using a single mutex to protect the particle array in the previous section did reduce

contention. However, if two threads wanted to access two separate particles within that

array, then they would be forced to take turns since the mutex locks the entire array. In

order to allow updating and rendering threads to simultaneously access the particle array,

it is tempting to add a mutex for each element as shown on the left in Figure 4.10. This is

not a good solution because, in general, mutexes have a considerable amount of overhead

[7]. Given that the particle array may have tens of thousands of elements, attaching an

expensive mutex to each element would most likely worsen performance instead of improve

it. A lock free data structure, on the other hand, could allow multiple threads to access the

particles array safely without the cost of mutexes.

Similar to the ”multiple mutex” solution, using a lock free data structure has the potential

problem of the particle array being in an inconsistent state during rendering. However, an

www.manaraa.com

51

argument analogous to the one made above in the multiple mutex solution can be used.

Even though the particle array might have partially up to date information during any given

render, the renderer was going to update again very shortly and the particle array should be

up to date by then. We know this because CommitParticleData was called frequently

(see Figure 4.8) and, without waiting for locks to release, CommitParticleData would

run fairly quickly. Therefore, the potentially inconsistent state of particles should not be

noticeable to the end user.

4.3.1 Code

To make the particle array a lock free data structure, which threads are reading and

which ones are writing must be identified. A ”reader” thread only wants to know the value

of a contended resource, and a ”writer” thread wants to modify the value of a contended

resource. This is an important distinction to make because many reader threads can access

a contended resource simultaneously, but anytime a writer thread wants to modify the

resource’s value it must have exclusive access.

We know that the main thread (the one that is drawing) is only reading the particles,

and we also know that the background thread is writing to the particles. Without a mutex

guarding the particle array, there is a possibility that the main thread reads a particle

just as the background thread is writing to it; this may result in corrupted data. Thus, a

solution in which the two threads could both simultaneously access the array but not the

same particle was needed.

There were a variety of strategies that could have been employed, but the simplest was to

rely on an atomic instruction to achieve synchronization. Specifically, the compare-and-

swap operation was used. Compare-and-swap is an atomic read-modify-write operation

on a memory location that can only be implemented using special hardware instructions

[8]. In one atomic action, it compares the value of a variable with what is expected and, if

the variable has that expected value, it swaps that expected value with the desired value

www.manaraa.com

52

(see Code Listing 13). Once the atomic operation is attempted, it returns a boolean in-

dicating whether or not the operation is successful. The operation will not be successful

if there is another writer using the contended resource. A compare-and-swap opera-

tion is typically wrapped within a while loop since it may return false if a concurrent or

spurious write occurs. The latter may occur if the value of the variable is actually the

expected value (i.e. the resource is not contended) but the operation fails anyway. This

could happen if we utilized the weak version of atomic compare exchange [9], which is

a compare-and-swap operation defined in the std::atomic library in C++11. The

strong version of atomic compare exchange could be used in order to avoid spurious writes,

but the checks needed within the strong version are expensive. The weak version can yield

better performance if the operation is wrapped within a loop [9]. Given that this opera-

tion was supported on all of the platforms that ChilliSource supported, the weak version

of atomic compare exchange was used. Due to the infrequency of spurious writes and the

small number of threads, the weak version would be the best option in this case.

Code Listing 13: Pseudocode illustrating the behavior that a compare-and-swap operation. Although it
is shown as a function here to demonstrate how it works, it is executed atomically via special hardware
instructions.

1 bool compareAndSwap(contendedResource, expectedValue, newValue)
2 {
3 // Executes atomically
4 if(contendedResource is not expectedValue)
5 return false;
6

7 // Its value was the expected value, so change it to newValue
8 contendedResource = newValue;
9 return true;

10 }

In order to take advantage of the atomic compare exchange function, an atomic variable

must be used. An atomic boolean was incorporated into Concurrent Particle Data’s

particle struct, as shown in Code Listing 14. This atomic boolean, isContended, serves

as the variable that the compare-and-swap operation examines. It indicates whether or

not another thread is using this particle struct. When a thread wants access to the particle

www.manaraa.com

53

struct, it calls the atomic compare exchange function. It then compares isContended

with ”false” and, if it is false, will swap isContended with ”true”. The normal particle

operations will take place, and then isContended will be set back to false. Code listings

15 and 16 illustrate the needed changes in the CommitParticleData and Draw functions.

Code Listing 14: The struct that is used to within the particle array in Concurrent Particle Data
during the Lock Free case study.

1 struct Particle final
2 {
3 // NEW -> Atomic boolean
4 mutable std::atomic<bool> m_isContended = { false };
5 bool m_isActive = false;
6 Vector3 m_position;
7 Vector2 m_scale = Vector2::k_zero;
8 f32 m_rotation = 0.0f;
9 Colour m_colour = Colour::k_white;

10 };

Code Listing 15: Pseudocode illustrating the changes needed to make the particles array a lock free
data structure in the CommitParticleData function.

1 ConcurrentParticleData::CommitParticleData(particleArray,
2 newParticleIndicesArray,
3 AABB, Sphere)
4 {
5 // Copy over all particles to the member particle array
6 for(i = 0 to particleArray.size())
7 {
8 // NEW -> Retrieve the particle, but we don't have ownership of it yet
9 currentParticle = particleArray[i];

10 gotOwnershipOfParticle = false;
11

12 // NEW -> Keep spinning if *isContended* is true.
13 // Set it to true once it is false.
14 while(gotOwnershipOfParticle is false)
15 {
16 gotOwnershipOfParticle = currParticle.isContended
17 .CompareExchange(false, true);
18 }
19

20 // Copy the particle now that we have ownership of it
21 this.particleArray[i] = currentParticle.copySubset();
22

23 // NEW -> Release the particle
24 currentParticle.isContended = false;
25 }
26

27 // NEW -> Lock the mutex for the remainder of the function
28 using lock(this.mutex)
29 {

www.manaraa.com

54

30 // Append the new indices to the member new indices array
31 this.newParticleIndices.append(newParticleIndices.copy());
32

33 // Copy the bounding information to the member variables
34 this.AABB = AABB.copy();
35 this.Sphere = Sphere.copy();
36 }
37 }

Code Listing 16: Pseudocode illustrating the changes needed to make the particles array a lock free
data structure in the Draw function.

1 Drawable::Draw(camera)
2 {
3 // NEW -> Lock the concurrent particle data object only for new indices
4 this.concurrentParticleData.Lock();
5

6 // Activate the newly emitted particles in the static billboard
7 for(particleIndex in this.concurrentParticleData.GetNewParticleIndices())
8 {
9 ActivateParticleInBillboard(particleIndex);

10 }
11

12 // NEW -> Unlock the concurrent particle data object only for new indices
13 this.concurrentParticleData.Unlock();
14

15 // Iterate through all of the particles and draw each one
16 DrawParticles(this.concurrentParticleData.GetParticleArray(), camera);
17 }
18

19 StaticBillboardDrawable::DrawParticles(particleArray, camera)
20 {
21 // Copy over all particles to the member particle array
22 for(i = 0 to particleArray.size())
23 {
24 // NEW -> Retrieve the particle, but we don't have ownership of it yet
25 currentParticle = particleArray[i];
26 gotOwnershipOfParticle = false;
27

28 // NEW -> Keep spinning if *isContended* is true.
29 // Set it to true once it is false.
30 while(gotOwnershipOfParticle is false)
31 {
32 gotOwnershipOfParticle = currParticle.isContended
33 .CompareExchange(false, true);
34 }
35

36 // Render the particle if it is active and is activated in the billboard
37 if(currentParticle.isActive and currentParticle is in particleBillboard)
38 {
39 Render(currentParticle);
40 }
41

42 // NEW -> Release the particle

www.manaraa.com

55

43 currentParticle.isContended = false;
44 }
45 }

4.3.2 Results

Just as in the first case study, the lock free case study produced the following four figures

running a series of automated games in two scenarios:

1. Scenario used for particle metrics (Figure 4.11 and Figure 4.12)

� Min: 0

� Max: 50,000

� Step: 5,000

� Each game was 5 seconds long

� This scenario ran when particles per emission (PPE) was 10% and 100% of

total maximum particles (TMP) or, in other words, when the particle effect had

multiple-bursts and a single burst.

2. Scenario used for timing metrics (Figure 4.13 and Figure 4.14)

� Min: 50,000

� Max: 50,000

� Each game was 5 seconds long

� This scenario ran when particles per emission (PPE) was 10% and 100% of

total maximum particles (TMP) or, in other words, when the particle effect had

multiple-bursts and a single burst.

These four series of automated games were run with and without the above changes to

the source code, a total of 8 series of automated games. We can refer to Figure 4.5 for the

specific metadata values used.

As before, the two series that ”played the same game” should be compared in order to

ensure that the correct conclusions are drawn.

www.manaraa.com

56

Figure 4.11 A graph showing render ball function calls over total maximum particles for a single
particle effect. This shows that changing Concurrent Particle Data to use a lock free data
structure does not impact the number of times that the ball is rendered. The multiple-burst and
single-burst (0.1 and 1.0 TMP, respectively) scenarios for the Lock Free data series are almost the
same as the ones for the data series without any changes to the source code (i.e. the Original data
series).

Figure 4.12 A graph showing particles actually rendered over total maximum particles for a single
particle effect. This shows that changing Concurrent Particle Data to use a lock free data
structure does not positively impact the number of times that particles are rendered. The multiple-
burst and single-burst (0.1 and 1.0 TMP, respectively) scenarios for the Lock Free data series are
lower (which means worse performance) than the ones for the Original data series.

www.manaraa.com

57

Figure 4.13 A graph showing the number of section calls for various sections of code for a single
particle effect. This shows that, between the Lock Free and Original data series, the drawing
functions had approximately the same number of section calls. The Original data series for the
particle update functions also had approximately the same number of function calls; however, the
Lock Free data series for 0.1 TMP had a little less section calls than the Original.

Figure 4.14 A graph showing the time spent in various sections of code for a single particle effect.
CommitParticleData for the Lock Free data series, as expected, experienced a performance
boost. For 0.1 TMP, the function went down from 47 seconds to 15. For 1.0 TMP, it went down
from 50 seconds to 7. This was, respectively, about an 68% and 86% increase in performance.

www.manaraa.com

58

4.3.3 Discussion

The particles actually rendered and render ball function calls figures, similar to the first

case study, do not show significant improvement from the original. However, the Lock Free

data series in the particles actually rendered figure shows slightly lower numbers than the

original.

As predicted, the timing metric figures show that CommitParticleData experienced

a healthy performance boost. For 0.1 TMP, the function went down from 47 seconds to 15.

For 1.0 TMP, it went down from 50 seconds to 7. This was, respectively, about an 68% and

86% boost!5A larger boost was seen in the latter scenario due to the fact that the there

were more active particles earlier in the game(s), and more contention was expected since

the draw function needed to render more particles. This blocked CommitParticleData

for longer, and minimizing that increased wait time resulted in better run times.

Although these were excellent initial results for the the Lock Free case study, there were

two problems:

� The particle metric figures did not improve.

� The timing metric were only favorable for a single particle effect.

The first problem was an issue because these optimizations should have aided in rendering

more particles since updating them took less time. As for the second problem, the next

section will aide in understanding how the two case studies behaved quite differently when

the games were run with multiple particle effects instead of just one.

5See Figure 4.24 in Section 4.4 for a summary table of these timed sections.

www.manaraa.com

59

4.4 Unexpected Results with Multiple Particle Effects

Figure 4.15: The metadata used for the 8 series of automated games for the unexpected results from the
case studies.

In order to exhibit the unexpected results for the Multiple Mutex and Lock Free case

studies, 8 automated games were run per case study as we did before. This time, however,

the particles were distributed across 10 particle effects. For example, the scenario that had

a particle range of 0 to 50K would now have 0 to 5K per particle effect. For clarification,

please refer to Figure 4.15.

Sections 4.4.1 and 4.4.2 both show the results of running the same games as before but

with 10 particle effects attached to the ball instead of just 1.

www.manaraa.com

604.4.1 Using More Than One Mutex Results

Figure 4.16 A graph showing render ball function calls over total maximum particles for ten particle
effects. The two data series, > 1 Mutex and Original, show no stark differences; their render ball
function calls values are nearly the same for the multiple-burst (0.1 TMP) and single-burst (1.0
TMP) games.

Figure 4.17 A graph showing particles actually rendered over total maximum particles for ten particle
effects. The two data series, > 1 Mutex and Original, show no stark differences; their particles
actually rendered values are nearly the same for the multiple-burst (0.1 TMP) and single-burst (1.0
TMP) games.

www.manaraa.com

61

Figure 4.18 A graph showing the number of section calls for various sections of code for ten particle
effects. The two data series, > 1 Mutex and Original, show no stark differences; the section call
values are the same for the multiple-burst (0.1 TMP) and single-burst (1.0 TMP) games.

Figure 4.19 A graph showing the time spent in various sections of code for ten particle effects.
Unlike in the single particle effect results, this shows not only no significant improvement to the
CommitParticleData function, but it also shows that there was little contention to begin with
in the Original data series.

www.manaraa.com

624.4.2 Lock Free Results

Figure 4.20 A graph showing render ball function calls over total maximum particles for ten particle
effects. Although they are very similar, the Lock Free data series exhibits slightly lower render ball
function calls values than the Original data series.

Figure 4.21 A graph showing particles actually rendered over total maximum particles for ten particle
effects. Similar to the single particle effect results, the multiple-burst and single-burst (0.1 and 1.0
TMP, respectively) scenarios for the Lock Free data series are lower than the ones for the Original
data series.

www.manaraa.com

63

Figure 4.22 A graph showing the number of section calls for various sections of code for ten particle
effects. The two data series, Lock Free and Original, show no stark differences. However, the Original
data series seems to have a slightly higher section call count than the Lock Free data series for both
the multiple-burst (0.1 TMP) and single-burst (1.0 TMP) games.

Figure 4.23 A graph showing the time spent in various sections of code for ten particle effects.
Unlike in the single particle effect results, this shows not only no significant improvement to the
CommitParticleData function, but it also shows that there was little contention to begin with
in the Original data series.

www.manaraa.com

64

4.4.3 Discussion

The most interesting (and, perhaps, frustrating) part of the results shown in sections 4.4.1

and 4.4.2 was that all of the data series that ”played the same game” looked essentially

the same. The ball was rendered nearly as many times for the four scenarios for both case

studies, and the particles actually rendered were also similar for both as well.

However, just like in the Lock Free case study results, there were slightly fewer particles

rendered than in the original. To try to understand what happened, let us examine figures

4.24 and 4.25. In particular, let us focus on the ”1.0 TMP” scenario with the Original and

Lock Free implementations.

Within the 1.0 TMP Original results for a single particle effect, about 50 of the 1046 sec-

onds spent in the function ParticleUpdateTask are dedicated to calling CommitParticleData.

Further, about 46 of these 50 seconds in CommitParticleData were spent waiting for

a lock to release. Within the 1.0 TMP Lock Free results for a single particle effect,

about 7 of the 58 seconds spent in the function ParticleUpdateTask were spent calling

CommitParticleData.

Within the 1.0 TMP Original results for ten particle effects, about 9 of the 75 seconds

spent in the function ParticleUpdateTask were dedicated to calling CommitParticleData.

Further, about 5 of these 9 seconds in CommitParticleData were spent waiting for

a lock to release. Within the 1.0 TMP Lock Free results for a single particle effect,

about 9 of the 75 seconds spent in the function ParticleUpdateTask were spent calling

CommitParticleData.

For a single effect, it can be seen that the Lock Free implementation did an excellent

job in reducing contention for a large data structure between a background thread writing

to it and a main thread reading from it. For ten effects, the Lock Free implementation

did little to reduce the contention because there was no contention to begin with. This

6It may not make sense why there are greater than 100 seconds here since we ran 20 runs for 5 seconds, but
it was mostly due to the timer starting only when the ball was activated after the entire scene had been
created.

www.manaraa.com

65

Figure 4.24 A summary of the timed sections for the unexpected results for the Lock Free
and > 1 Mutex case studies for a single particle effect. This highlights that, for a single
particle effect, the Original Data series clearly experienced performance-hindering contention in
CommitParticleData. The changes made in the > 1 Mutex and Lock Free data series signifi-
cantly reduced this contention.

Figure 4.25 A summary of the timed sections for the unexpected results for the Lock Free and
> 1 Mutex case studies for ten particle effects. This highlights that, for many particle effects, the
Original Data series did not experience a great deal of contention in CommitParticleData. Since
there was no contention to begin with, the changes made in the > 1Mutex and Lock Free data series
did not make a significant impact.

www.manaraa.com

66

Figure 4.26 The lifetime of a single particle effect
in relation to its scheduled background thread and
the main thread.

Figure 4.27 The lifetime of a many particle effects
in relation to their scheduled background threads
and the main thread.

can be observed by the fact that the results from the Original implementation with ten

effects showed that, compared with a single effect, an insignificant amount of time was

spent waiting for a lock to release.

This behavior can be better understood if we consider the lifetime of particle effects in two

scenarios: one with many effects, and one with a single effect. The one with many particle

effects would have its particles distributed across many Particle Effect Components

and, thus, many Particle Drawables. The Renderer running on the main thread,

then, renders each Particle Effect Component separately. When the main thread

requests to lock any given effect’s particle array mutex, it has a reduced chance of waiting

for it. This is because each Particle Effect Component has its own background

thread and each one is only responsible for a fraction of the particles. For example, using

10 effects would mean approximately a 1/10th chance of contending with any of the particle

effects. The one with a single particle effect, on the other hand, has one Particle Effect

Component with a large array of particles that it has to manage on its own. It can only

schedule one background thread at a time and is responsible for updating every single

particle. When the Renderer running on the main thread requests to lock the effect’s

particle array mutex, it has a greater chance of waiting for it.

The unexpected results of these case studies demonstrated the differences between man-

www.manaraa.com

67

aging contention for a single, large data structure and for many pieces or ”shards” of a

fragmented data structure. The former was likely to have contention if there was writing

involved between two threads, and a solution that utilized ”lock free” atomic read-modify-

write operations could significantly reduce contention. The latter, however, was unlikely

to have contention between two threads, and so the developer could get away with naively

using mutexes to synchronize their data.

www.manaraa.com

68

CHAPTER 5 CHILLISOURCE PARTICLE EFFECT COMPONENT

OBSERVATION STUDIES

5.1 Overview

I performed the optimization case studies in the previous chapter to understand the

contention between the main thread that renders particles and the background thread

that updates them. This chapter explores various other aspects of Particle Effect

Components. I examined three aspects of the particle effect: (1) the importance of

the ConcurrentParticleData object, (2) the relationship between ChilliSource’s Task

Scheduler and Particle Effect Components, and (3) the perplexing scenarios in

which particle effects do not render particles.

5.2 Copying Data with ConcurrentParticleData

5.2.1 Overview

As discussed in prior chapters, the ConcurrentParticleData object contains copies

of primitives, objects, and data structures needed by the Particle Drawable to render

the particles. It also handles all of the locking necessary in order to synchronize the back-

ground and main threads. This section addresses what occurred when ConcurrentParticleData

was not used and the member variables within Particle Effect Component were in-

stead directly used by the Particle Drawable.

The results showed that using the ConcurrentParticleData object for a single par-

ticle effect shifts the heavy contention to itself instead of the Particle Drawable. In

www.manaraa.com

69

Figure 5.1 Demonstrates how the updating and rendering threads use the
ConcurrentParticleData object to communicate information about the particle effect.
After the updating thread updates the particle data directly from the particle effect, it copies a
subset of the particle data that is necessary for rendering to the ConcurrentParticleData
instance. The rendering thread reads from the ConcurrentParticleData object and not
directly from the particle effect itself.

Figure 5.2 Demonstrates how, during this observation study, updating
and rendering threads worked directly with the particle effect data; the
ConcurrentParticleData object was completely removed.

other words, if the ConcurrentParticleData object was not used during a game with a

single particle effect attached to the ball, then the Particle Drawable would take on the

contention that was observed earlier on this paper. For 10 particle effects, however, there

was not any contention to begin with so using the ConcurrentParticleData object

made little difference.

www.manaraa.com

70

5.2.2 Code

There were a considerable number of changes that were needed to remove ConcurrentParticleData

from the Particle Effect Component and Particle Drawable classes:

� Modified the Particle Drawable to use pointers from the Particle Effect

Component and removed the ConcurrentParticleData member variable.

� Added variables that ConcurrentParticleData was keeping track of.

� Added functions that ConcurrentParticleData provided. (Which primarily in-

cluded accessor and locking/unlocking functions)

� Modified ParticleUpdateTask to update member variables from the Particle

Effect Component.

� Modified the Particle Effect Component and Particle Drawable to utilize

locks and mutexes in order to ensure thread safety.

The majority of the above changes are described in Code Listings 17 and 18, but it is

also necessary to expand on some points.

In addition to keeping track of information needed for rendering, ConcurrentParticleData

has two booleans that the Particle Effect Component uses for scheduling updates:

hasActiveParticles and isUpdating. These booleans describe whether or not there

are any particles active in the effect and if ParticleUpdateTask is running, respec-

tively. If hasActiveParticles is false when the component is updating on the main

thread, then the component stops1. If isUpdating is false when the component is up-

dating on the main thread, then the component schedules a ParticleUpdateTask.

In order to replace this functionality from ConcurrentParticleData, I added these

booleans to Particle Effect Component as atomic booleans passed by reference to

the ParticleUpdateTask function.2

1The particle effect will only completely stop if looping is false as well.
2These booleans are not shown in the pseudocode for simplicity, but their behavior is simple;
hasActiveParticles will switch to false if it did not update any particles in ParticleUpdateTask,
and isUpdating will switch to false at the end of ParticleUpdateTask.

www.manaraa.com

71

Since the Particle Effect Component uses the bounding information objects on

the main thread and the Drawable does not, I created two mutexes for the bounding

information and the rest of the rendering data.

As shown by Code Listing 17, the ParticleUpdateTask is locked by a member variable

mutex. It also passes references to new particle indicies (i.e. copiedAtts.newParticleIndices)

and to the bounding information (i.e. copiedAtts.AABB and copiedAtts.Sphere).

Code Listing 17: Pseudocode describing the important changes needed to remove the
ConcurrentParticleData instance from the Particle Effect Component.

1 ParticleEffectComponent::OnUpdate()
2 {
3 // Get a struct containing copies (and pointers) to pass to the task
4 copiedAtts = CopyUpdateAttributes();
5

6 // Schedule a task to update the particle in the background
7 ApplicationTaskScheduler.ScheduleTask
8 ({
9 // NEW -> Lock the mutex for the whole task

10 using lock(this.mutex)
11 {
12 ParticleUpdateTask(copiedAtts);
13 }
14 });
15 }
16

17 ParticleUpdateTask(copiedAtts)
18 {
19 // Update particles if they are active
20 for(particle in copiedAtts.particleArray)
21 {
22 if(particle.isActive)
23 particle.UpdateValues();
24 }
25

26 // Apply affectors
27 for(affector in copiedAtts.particleAffectors)
28 {
29 affector.AffectParticles();
30 }
31

32 // Try to emit
33 newParticleIndices = copiedAtts.particleEmitter.EmitParticles();
34

35 // NEW -> Append the new indices to the member new indices array
36 // (instead of passing it to CommitParticleData)
37 copiedAtts.newParticleIndices.append(newParticleIndices.copy());
38

39 // NEW -> Update member bounding shapes; lock the bounding shapes mutex

www.manaraa.com

72

40 // (instead of passing it to CommitParticleData)
41 using lock(copiedAtts.boundingMutex)
42 {
43 copiedAtts.AABB, copiedAtts.Sphere = CalculateBoundingShapes();
44 }
45 }

Code Listing 18 shows that the Particle Drawable did not change significantly.

The most notable change is that the Draw function is now locked by Particle Effect

Component’s mutex within the Render function. Additionally, the particles array is not

passed to the DrawParticles function. Instead, the array is passed into the drawable

when it is created by the Particle Effect Component.

Code Listing 18: Pseudocode describing the important changes needed to remove the
ConcurrentParticleData instance from the Particle Drawable.

1 ParticleEffectComponent::Render(camera)
2 {
3 // Use the Particle Drawable to draw particles to the screen
4 if(this.playbackState is playing or this.playbackState is stopping)
5 {
6 // NEW -> Lock the member mutex to keep particles and new particle indices safe
7 using lock(this.mutex)
8 {
9 this.drawable.Draw(camera, this.TakeNewParticleIndices());

10 }
11 }
12 }
13

14 // NEW -> newParticleIndicies is passed to the Draw function
15 Drawable::Draw(camera, newParticleIndices)
16 {
17 // NEW -> No locking; it's locked above in Render.
18

19 // Activate the newly emitted particles in the static billboard
20 for(particleIndex in newParticleIndices)
21 {
22 ActivateParticleInBillboard(particleIndex);
23 }
24

25 // Iterate through all of the particles and draw each one
26 // NEW -> The particles array is a member variable of the drawable
27 DrawParticles(camera);
28 }

www.manaraa.com

73

5.2.3 Results

The metrics shown here are the result of running a series of automated games in two

scenarios:

1. Scenario used for particle metrics (Figure 5.3, Figure 5.4, Figure 5.5, Figure 5.6)

� Min: 0

� Max: 50,000

� Step: 5,000

� Each game was 5 seconds long

� This scenario ran when particles per emission (PPE) was 10% and 100% of

total maximum particles (TMP) or, in other words, when the particle effect had

multiple-bursts and a single burst.

� This scenario ran with 1 and 10 particle effects

2. Scenario used for timing metrics (Figure 5.7, Figure 5.8, Figure 5.9, Figure 5.10)

� Min: 50,000

� Max: 50,000

� Each game was 5 seconds long

� This scenario ran when particles per emission (PPE) was 10% and 100% of

total maximum particles (TMP) or, in other words, when the particle effect had

multiple-bursts and a single burst.

� This scenario ran with 1 and 10 particle effects

These 8 series of automated games were run with and without the above changes to the

source code for a total of 16 series of automated games.

5.2.4 Discussion

The particles actually rendered (Figure 5.3) and render ball function calls (Figure 5.4)

charts for 1 particle effect show something interesting. The No Object data series (the

data series without the ConcurrentParticleData object) rendered the ball fewer times

www.manaraa.com

74

Figure 5.3 A graph showing render ball function calls over total maximum particles for a single par-
ticle effect. This shows that the No Object data series exhibits worse performance than the Original
data series. The render ball function calls values from the Original data series are consistently higher
than the No Object data series for the multiple-burst (0.1 TMP) and single-burst (1.0 TMP) games.

Figure 5.4 A graph showing particles actually rendered over total maximum particles for a single
particle effect. Similarly to Figure 5.3, this shows that the Original data series performs better
(i.e. renders more particles) than the No Object data series for the multiple-burst (0.1 TMP) and
single-burst (1.0 TMP) games.

www.manaraa.com

75

Figure 5.5 A graph showing render ball function calls over total maximum particles for ten particle
effects. This shows little to no difference between the render ball function calls values from the
Original and No Object data series for the multiple-burst (0.1 TMP) and single-burst (1.0 TMP)
games.

Figure 5.6 A graph showing particles actually rendered over total maximum particles for ten particle
effects. Like in Figure 5.5, the particles actually rendered values from the Original and No Object
data series are very similar.

www.manaraa.com

76

Figure 5.7 A graph showing the number of section calls for various sections of code for a single
particle effect. This most notably shows that the section calls for the Original data series had
significantly higher values in the drawing functions then the ones in the No Object data series.

Figure 5.8 A graph showing the time spent in various sections of code for a single particle effect.
This illustrates how the contention was moved from CommitParticleData to Draw when the
ConcurrentParticleData object was not used (i.e. the No Object data series).

www.manaraa.com

77

Figure 5.9 A graph showing the number of section calls for various sections of code for ten particle
effects. This shows that removing the ConcurrentParticleData object for many particles did
not affect the number of section calls; the Original and No Object data series both have similar
values for the multiple-burst (0.1 TMP) and single-burst (1.0 TMP) games.

Figure 5.10 A graph showing the time spent in various sections of code for ten particle effects. Like
in Figure 5.9, this shows that the Original and No Object data series both have similar run times
for the multiple-burst (0.1 TMP) and single-burst (1.0 TMP) games.

www.manaraa.com

78

than the original, and it also rendered its particles fewer times. An examination of the

timing metrics for 1 particle effect (Figure 5.8) shows why this was occurring. Instead of

the background thread waiting for the mutex to release in ParticleUpdateTask, the

contention had moved to the Particle Drawable in the Draw function.

If we further examine Figure 5.8, it shows that the Draw function in the No Object data

series spends less time rendering than the Original data series. Although a lower run-time

usually means that the engine is performing better, it is not true in this case. I did not

modify the amount of time that it takes to render all of the effect’s particles and, for the

single-burst (PPE is 1.0 of TMP) particle effect, only 72 - 33 = 39 seconds of meaningful

work was done since the rendering thread spent about 33 seconds waiting for a lock to

release. Since it spent less time in the Draw function, it rendered fewer particles.

In other words, the Concurrent Particle Data object improves performance by

increasing the number of particles that are drawn to the screen which results in a smoother

visual experience for the end user.

The charts for 10 particle effects, however, do not demonstrate this performance benefit.

Both the Original and No Object data series show nearly identical results. This is because

there was less overall contention when the particles were distributed across effects, as discov-

ered in the previous chapter. Although the benefits of using a ConcurrentParticleData

object was not as significant when using many particle effects, it is appealing from a soft-

ware engineering perspective. Encapsulating the thread synchronization to a single class is

clearer and more maintainable, and that will be useful if the developer desires to refactor

the ParticleEffectComponent.

5.3 Multithreading and Task Scheduling

5.3.1 The ChilliSource Task Scheduler

As mentioned earlier, ParticleUpdateTask is scheduled as a background thread by

ChilliSource’s Task Scheduler. The Task Scheduler can schedule a variety of task

www.manaraa.com

79

Figure 5.11 Illustrates the lifetime of small tasks, game logic tasks, and main thread tasks in relation
to the main thread. The important concept to understand from this figure is how small tasks are
ran whenever regardless of what the main thread is doing and the main thread tasks are bound by
the main thread. The game logic tasks can also be technically ran as the main thread is processing
the game loop, but it is special in that it is guaranteed to be done by the end of the current frame.

Figure 5.12 Illustrates the relationship between the updating and rendering processes when the
updating thread is defined as a small task, game logic task, and when the updating process is not
parallelized at all (i.e. the not threaded figure). As previously demonstrated in Figure 5.11, this
reiterates that the largest difference between game logic task and small task is that the main thread
(i.e. the thread that renders particles) may have to wait on the game logic task if it is not finished by
the end of the current frame. The small task, however, is not hindered by any restrictions; this task
can be scheduled and ran concurrently alongside the rendering thread. A ParticleUpdateTask
that is not scheduled as a background thread, however, forces the rendering thread to wait and thus
no concurrent work is done.

www.manaraa.com

80

types, and this section will delve into the different outcomes when ParticleUpdateTask

is scheduled as a small task, a game logic task, and if it is not scheduled at all and runs

on the main thread. The results of this study showed that using a small task to schedule

a background thread to execute ParticleUpdateTask yielded much better results than

two alternatives (i.e. scheduling a game logic task or not scheduling it at all).

A small task is considered to be a task with a short execution time such that it can

be processed within a single frame, where ”a single frame” is the time it takes for the

engine to propagate all of its Update events from its Application Systems, States,

Entities, Components, and so on (see Section 2.3.3). If a small task runs too long,

then the task will have a negative impact on the overall performance of the program. A

game logic task is a special kind of small task that is guaranteed to be executed prior to

main thread tasks. It is easy to see, then, that long running game logic tasks will drastically

affect the program’s performance. Main thread tasks are also small tasks that are executed

on the main thread after game logic tasks. Main thread tasks are executed by the main

Application instance, and these are typically scheduled by background tasks to complete

I/O jobs or any other job that needs to be sequential. All of these tasks are added to Task

Pools, which are a collection of tasks that are performed by one of the worker threads

owned by the pool. These pools will continue to perform tasks until they are deallocated

and, if there are no more tasks to perform, they will sleep until another task is added.

Code Listing 19: Pseudocode showing how ChilliSource’s Task Scheduler schedules small tasks, game
logic tasks, and main thread tasks. This provides context on how the scheduler schedules tasks and, most
importantly, how the game logic task uses the gameLogicCondition member variable to notify the main
thread when all game logic tasks are executed (see Code Listing 20).

1 TaskScheduler::ScheduleTask(taskType, task)
2 {
3 switch(taskType)
4 {
5 // Add a task to the small thread task pool
6 case TaskType::small:
7 this.smallTaskPool.AddTask(task); break;
8

9 // Add a task to the main thread task pool
10 case TaskType::mainThread:

www.manaraa.com

81

11 this.mainThreadTaskPool.AddTask(task); break;
12

13 // Schedule the task as a small task, but be sure to notify when
14 // all game logic tasks have been completed
15 case TaskType::gameLogic
16 ScheduleTask(TaskType::small,
17 {
18 task();
19 if(--this.gameLogicTaskCount is 0)
20 this.gameLogicCondition.notify();
21 });
22

23 this.gameLogicTaskCount++;
24

25 break;
26

27 // File and large tasks can also be scheduled, but they are outside
28 // of this paper's scope
29 }
30 }

Code Listing 20: Pseudocode showing how game logic tasks force the main thread to wait until
they are finished before allowing the main thread to continue. See Code Listing 19 to see how the
gameLogicCondition variable is used to notify the main thread that the game logic tasks are completed.

1 TaskScheduler::ExecuteMainThreadTasks()
2 {
3 // Use a lock, mutex, and condition variable to wait
4 // until we are notified to continue.
5 using lock(this.gameLogicMutex) as lock
6 {
7 while(this.gameLogicTaskCount is not 0)
8 this.gameLogicCondition.wait(lock);
9 }

10

11 this.mainThreadTaskPool.PerformTasks();
12 }

5.3.2 Code

Scheduling the different types of tasks is fairly straightforward; the task type is simply

passed into the ScheduleTask method. This was not included in previous code listings

in order to simplify them, but the code listings below illustrate the different ways the

ParticleUpdateTask function was scheduled for this study. It should be noted that,

by default, the Particle Effect Component schedules ParticleUpdateTask as a

www.manaraa.com

82

small task. Thus, during this study, the Small Task data series was analogous to the Original

data series in previous sections.

5.3.2.1 Small and Game Logic Task Type

Code Listing 21: Pseudocode showing how ParticleUpdateTask can be scheduled as a small task and
as a game logic task.

1 ParticleEffectComponent::OnUpdate()
2 {
3 // Get a struct containing copies (and pointers) to pass to the task
4 copiedAtts = CopyUpdateAttributes();
5

6 // Schedule a SMALL TASK
7 if (currTaskType is TaskType::small)
8 {
9 ApplicationTaskScheduler.ScheduleTask(TaskType::small,

10 {
11 ParticleUpdateTask(copiedAtts);
12 });
13 }
14 // Schedule a GAME LOGIC TASK
15 else if (currTaskType is TaskType::gameLogic)
16 {
17 ApplicationTaskScheduler.ScheduleTask(TaskType::gameLogic,
18 {
19 ParticleUpdateTask(copiedAtts);
20 });
21 }
22 }

5.3.2.2 No Task Scheduled (Not Threaded)

The sequential version of ParticleUpdateTask was performed in a similar fashion

to the other tasks in that a struct was passed to it and the ConcurrentParticleData

object was still used. Although these things were not strictly needed, they were included

primarily to ”level the playing field” so that the results from all three versions were easier

to compare.

Code Listing 22: Pseudocode showing how ParticleUpdateTask was not scheduled and was simply run
on the main thread.

1 ParticleEffectComponent::OnUpdate()
2 {
3 // Get a struct containing copies (and pointers) to pass to the task
4 copiedAtts = CopyUpdateAttributes();
5

6 // Do not schedule a task

www.manaraa.com

83

7 ParticleUpdateTask(copiedAtts);
8 }

5.3.3 Results

The following two scenarios were used when generating metrics for the small task type,

the game logic task type, and the series without a task scheduled:

1. Scenario used for particle metrics (Figure 5.3, Figure 5.4, Figure 5.5, Figure 5.6)

� Min: 0

� Max: 50,000

� Step: 5,000

� Each game was 5 seconds long

� This scenario ran when particles per emission (PPE) was 10% and 100% of

total maximum particles (TMP) or, in other words, when the particle effect had

multiple-bursts and a single burst.

� This scenario ran with 1 and 10 particle effects

2. Scenario used for timing metrics (Figure 5.7, Figure 5.8, Figure 5.9, Figure 5.10)

� Min: 50,000

� Max: 50,000

� Each game was 5 seconds long

� This scenario ran when particles per emission (PPE) was 10% and 100% of

total maximum particles (TMP) or, in other words, when the particle effect had

multiple-bursts and a single burst.

� This scenario ran with 1 and 10 particle effects

This totals to 24 series of games that were executed in order to generate these figures.

www.manaraa.com

84

Figure 5.13 A graph showing render ball function calls over total maximum particles for a single
particle effect. This shows two things: the Not Threaded and Game Logic Task data series share
nearly identical values, and the Small Task data series performs better (i.e. renders the ball more)
than the other data series for the multiple-burst (0.1 TMP) and single-burst (1.0 TMP) games.

Figure 5.14 A graph showing particles actually rendered over total maximum particles for a single
particle effect. This also shows that the Original data series performed better than the Game Logic
Task and Not Threaded data series by rendering more particles. Similar to Figure 5.13, the Game
Logic and Not Threaded data series render nearly the same amount of particles.

www.manaraa.com

85

Figure 5.15 A graph showing render ball function calls over total maximum particles for ten particle
effects. Most notably this shows that not only the Original data series performed better than the
Game Logic Task data series, but the Game Logic Task performed better than the Not Threaded
data series for the multiple-burst (0.1 TMP) and single-burst (1.0 TMP) games.

Figure 5.16 A graph showing particles actually rendered over total maximum particles for ten particle
effects. This reiterates that the Game Logic Task data series out-performed the Not Threaded data
series by rendering more particles, and that the Original data series out-performed both of the other
data series.

www.manaraa.com

86

Figure 5.17 A graph showing the number of section calls for various sections of code for a single
particle effect. This shows that the Game Logic and Not Threaded data series had about the same
number of section calls and that the Original data series had more than both of the other data series
for the multiple-burst (0.1 TMP) and single-burst (1.0 TMP) games.

Figure 5.18 A graph showing the time spent in various sections of code for a single particle effect.
This shows the Game Logic and Not Threaded data series shared the same run times for the multiple-
burst (0.1 TMP) and single-burst (1.0 TMP) games. The Original Data series had longer run times,
but this is because it had more opportunities to run (see the section call numbers in Figure 5.17)
and not because of poor performance.

www.manaraa.com

87

Figure 5.19 A graph showing the number of section calls for various sections of code for ten particle
effects. Like in the particle metric graphs, this shows that the Game Logic Task data series performed
better (i.e. more section calls) than the Not Threaded data series and that the Original data series
had more section calls than them both.

Figure 5.20 A graph showing the time spent in various sections of code for ten particle effects. This
shows that the run times between the Game Logic and Not Threaded data series are not terribly
different, but Not Threaded does have slightly lower run times than the Game Logic Task. Although
a lower run time usually indicates better performance, in this case this is not true when we weigh
this fact against Figures 5.15 and 5.16. This is because lower render ball function calls value results
in choppy visuals, and that is not at all desirable to the end-user.

www.manaraa.com

88

5.3.4 Discussion

For a single particle effect, the Not Threaded and GameLogicTask data series shared

nearly identical values (Figures 5.13, 5.14, 5.17, and 5.18). They rendered the same amount

of particles, they rendered the ball just as many times, and they spent the same amount of

time in various parts of the code. This shows that, at least in the case of a single effect, the

main thread waited about the same amount of time for the game logic task as if it was not

even threaded.

For multiple particle effects, on the other hand, the overall performance of the Not

Threaded data series was worse than the GameLogicTask data series (Figures 5.15, 5.16,

5.19, and 5.20). Although the timing metrics between the two data series were not too

different, the particle metrics showed that the Not Threaded data series rendered fewer

particles and the ball was not rendered as many times. These results revealed that being

able to process multiple effects at the same time before executing the main thread tasks

proved to be more efficient than processing them sequentially.

The results of this particular study demonstrated that scheduling background tasks may

not necessarily be faster than its single-threaded implementation depending on how they are

organized. Although it may seem obvious, it showed that being able to process many small

tasks at once is more efficient than processing a single large task. As a software engineer,

it is important to understand the lesson that these results teach. That is, forcing a multi-

threaded solution on a problem that does not easily lend itself to doing many small tasks at

once may not yield optimal results. In general, a multi-threaded program often requires a

considerable amount of overhead and is challenging to debug. Thus, it is critical to structure

multi-threaded programs such that it leverages these strengths. ChilliSource achieves this

by creating a system that is built to update many Particle Effect Components at

once in background threads.

www.manaraa.com

89

5.4 Particles Failing to Render

5.4.1 Render Failure

Particle Effect Components sometimes failed to render particles during auto-

mated games. When this behavior was observed, I added particle metrics particles actually

rendered and particles actually emitted to the instrumentation systems in order to numer-

ically quantify (and, perhaps, understand) the failure. Two main variants of this failure

emerged:

1. Particles were slow to emit, and it may look like it never emitted if the game’s duration

was too short

2. Particles never emitted even if the game’s duration was lengthened significantly

The first variant usually exhibited a low render ball function call metric, i.e. a low frames

per second, while the second variant did not seem to suffer from a performance hit in the

slightest. The first kind was, in a way, expected for particle effects with a large number

of particles simply because the renderer was slowed by the sheer number of iterations it

was forced to make every update cycle. The second kind, on the other hand, was puzzling

because it was not expected behavior. For reasons that will be explained later on in this

chapter, the particle effect never emitted any particles in the second variant because the

effect met two conditions:

� The effect’s duration elapsed

� There were no active particles

This was found to be due to the particle effect having a small duration, a large number

of particles, and it was not ”looping”. Since this was an important distinction between the

results of the two variants during this study, it is important to understand what ”looping”

means in the context of a Particle Effect Componant. A looping particle effect will

continue to draw and update itself even after its duration has elapsed, while a non-looping

particle effect will stop drawing and updating once its duration has elapsed. Figure 5.21

illustrates the difference between looping and non-looping particle effects.

www.manaraa.com

90

Figure 5.21: Demonstrates the difference between looping and non-looping particle effects that both have
a duration of 3 seconds. Each particle effect emits once every second, but the non-looping particle effect
will stop emitting after 3 seconds have elapsed. It’s important to note that, although the non-looping
particle effect has stopped emitting, ChilliSource will continue to render any active particles on the screen
from previous emissions. The engine will only clean up the particle effect if there are no longer any active
particles on the screen.

5.4.2 Emission Failure Source

In order to demonstrate and understand this particle failure, metrics were generated using

the same two scenarios as used in the past:

1. Scenario used for particle metrics (Figure 5.22, Figure 5.23, Figure 5.24, Figure 5.25)

� Min: 0

� Max: 50,000

� Step: 5,000

� Each game was 5 seconds long

� This scenario ran when particles per emission (PPE) was 10% and 100% of

total maximum particles (TMP) or, in other words, when the particle effect had

multiple-bursts and a single burst.

� This scenario ran with 1 and 10 particle effects

2. Scenario used for timing metrics (Figure 5.26, Figure 5.27, Figure 5.28, Figure 5.29)

� Min: 50,000

� Max: 50,000

� Each game was 5 seconds long

www.manaraa.com

91

� This scenario ran when particles per emission (PPE) was 10% and 100% of

total maximum particles (TMP) or, in other words, when the particle effect had

multiple-bursts and a single burst.

� This scenario ran with 1 and 10 particle effects

These two scenarios were both run for non-looping and looping particle effects3. This

totals to 16 series of games that were executed in order to generate these figures.

From these results (Figures 5.22, 5.23, 5.26, 5.27), it can be clearly seen that the

”Non-Looping; PPE is 1.0 of TMP” data series for a single particle effect demonstrates

the catastrophic emission failure. At about 30,000 total maximum particles, zero par-

ticles were rendered and, as a result, the render ball function calls skyrocketed since

the renderer was not focusing on rendering particles and instead had more opportuni-

ties to render the ball since the drawing step took less time (see Figure 5.27). What

was also interesting about this series was the extremely short amount of time that was

spent in ParticleUpdateTask. The other data series took up approximately 100 sec-

onds when running ParticleUpdateTask. Instead, it only spent about 27 seconds in

ParticleUpdateTask (see Figure 5.27).

The other data series from Figures 5.22, 5.23, 5.26, 5.27 did not experience the same

catastrophic failure as ”Non-Looping; PPE is 1.0 of TMP”. The only one that came close

was the ”Non-Looping; PPE is 1.0 of TMP” data series for multiple particle effects (see

Figures 5.24, 5.25, 5.28, 5.29). For this data series, the particles actually rendered dipped

and the render ball function calls rose at 40,000 total maximum particles. Thus, I focused

on that non-looping particle effects with a large number of particles per emission.

5.4.3 Emission Failure Solution

Discovering why this failure occurred was a multi-step process. The automated game was

set to run with a single effect with PPE at 1.0 TMP and a particle value of at least 30,000.

3The two data series, Non-Looping and Looping, were Particle Effect Components that have
isLooping set to false and true, respectively.

www.manaraa.com

92

Figure 5.22 A graph showing render ball function calls over total maximum particles for a single
particle effect. This shows that, overall, the Non-Looping data series performs better (or renders
more particles) than the Looping (i.e. Original) data series. However, it is important to pair this
fact with two other observations: (1) Figure 5.23 shows that the Non-Looping data series renders
considerably less particles, and (2) at about 30,000 TMP there is spike in render ball function calls.

Figure 5.23 A graph showing particles actually rendered over total maximum particles for a single
particle effect. As mentioned in Figure 5.22, this graph illustrates that the Non-Looping data series,
overall, does not render as many particles as the Looping data series. At 30,000 TMP, the Non-
Looping data series does not render any particles at all.

www.manaraa.com

93

Figure 5.24 A graph showing render ball function calls over total maximum particles for a single
particle effect. This shows two things: (1) The single-burst (or 1.0 TMP) games for Looping and
Non-Looping data series renders the ball nearly the same number of times (except at 40,000 TMP
the performance spikes when the number of rendered particles drops- see Figure 5.25), and (2) The
multiple-burst (or 0.1 TMP) games for the Non-Looping data series renders the ball significantly
more times.

Figure 5.25 A graph showing particles actually rendered over total maximum particles for a single
particle effect. As mentioned in Figure 5.24, this shows that the Non-Looping data series renders
nearly as many particles as the Looping data series for the single-burst (or 1.0 TMP) games (except
at 40,000 TMP when the number of rendered particles drops). It also shows that the Non-Looping
data series does not render as many particles as the Looping data series for the multiple-burst (or
0.1 TMP) games.

www.manaraa.com

94

Figure 5.26 A graph showing the number of section calls for various sections of code for a single
particle effect. This shows that: (1) The Non-Looping data series in multiple-burst (or 0.1 TMP)
games have a significantly higher section call count than the Looping data series, and (2) The Non-
Looping data series in single-burst (or 1.0 TMP) games have a lower section call count than the
Looping data series.

Figure 5.27 A graph showing the time spent in various sections of code for a single particle effect.
Similar to Figure 5.26, this shows that: (1) The Non-Looping data series in multiple-burst (or 0.1
TMP) games have a lower run time than the Looping data series, and (2) The Non-Looping data
series in single-burst (or 1.0 TMP) games have a significantly lower run time than all of the data
series and games.

www.manaraa.com

95

Figure 5.28 A graph showing the number of section calls for various sections of code for ten particle
effects. This shows that: (1) The Non-Looping data series in multiple-burst (or 0.1 TMP) games
have a significantly higher section call count than the Looping data series, and (2) The Non-Looping
data series in single-burst (or 1.0 TMP) games approximately have the same section call counts as
the Looping data series.

Figure 5.29 A graph showing the time spent in various sections of code for ten particle effects. This
shows that: (1) The Non-Looping data series in multiple-burst (or 0.1 TMP) games have a higher
run time for particle update functions and a lower run time for particle draw functions, and (2) The
Non-Looping data series in single-burst (or 1.0 TMP) games have similar run times as the Looping
data series.

www.manaraa.com

96

Since this seemed to be a rendering issue, breakpoints were set in the Render function

within the Particle Effect Component class. I discovered that the Render function

inside of a Particle Effect Component was never called during a game with a single

effect with PPE at 1.0 TMP (single-burst) and a particle value of at least 30,000. To further

investigate, breakpoints were placed within the renderer itself when it iterated over Render

Components and, specifically, when it iterated over a Particle Effect Component.

It turned out that the effect was being ”culled”, or ignored, because the bounding informa-

tion associated with the effect was set to its initial value: INTEGER MAX. Since the actual,

non-default value of its bounding information was set inside of ParticleUpdateTask,

this suggested that ParticleUpdateTask was not being called anymore. Placing break-

points within the Update method in the Particle Effect Component revealed that

it called the Stop function and ceased to schedule ParticleUpdateTask. As mentioned

earlier, this was called because the effect met two conditions:

� The effect’s duration elapsed

� There were no active particles

These conditions were met because ParticleUpdateTask had not updated or acti-

vated any particles within the effect’s duration time, which was 1 second. This can hap-

pen if the main thread that schedules the ParticleUpdateTask runs again before the

ParticleUpdateTask finishes its first update. This results in the main thread stopping

the particle effect because it thinks that the particle effect is done running (i.e. it saw that

there were no active particles and the effect’s duration elapsed). Thus, it can be inferred

that a non-looping particle effect coupled with a small duration and a large number of par-

ticles resulted in particle failure. Increasing the duration of a such a particle effect should

fix the problem.

The following figures (Figures 5.30, 5.31, 5.32, 5.33, 5.34, 5.35, 5.36, and 5.37) present

metrics that compare the emission failure from above with the solution to that failure. The

metrics from this ”Solution” data series are the result of running the same scenarios as above

www.manaraa.com

97

(see Section 5.4.2) with a non-looping particle effect, but this non-looping particle effect had

an increased duration time of 120 seconds4. An examination of these results shows that this

solution did indeed solve the problem. Particles were rendered from 0 to 50,000 total max-

imum particles, and a healthy amount of time was spent within ParticleUpdateTask,

as expected.

In essence, this study has revealed a bug that ChilliSource should fix. Since the failure

occurred because the ParticleUpdateTask did not fully execute once by the time the

particle effect’s duration elapsed, the failure would not happen if the engine allowed the

effect to update at least once before cleaning up and stopping the effect.

4Since a duration of any given game was only 5 seconds, a particle effect duration of 120 seconds is overkill.
I set the effect’s duration to this high number to be certain that it was a small duration number that was
causing the particle emission failure behavior. Note that this is separate from the lifetime of a particle itself;
the duration that is being referred to here is the duration of the particle effect as a whole and not the lifetime
of a particle individually.

www.manaraa.com

98

Figure 5.30 A graph showing render ball function calls over total maximum particles for a single
particle effect. This shows that the Non-Looping 120s Duration data series (the one with an increased
duration of 120 seconds) does not spike in performance at 30,000 TMP. This is a good thing because
it means that the renderer was spending some of its time rendering particles (see Figure 5.33).

Figure 5.31 A graph showing particles actually rendered over total maximum particles for a single
particle effect. This shows that the Non-Looping 120s Duration data series (the one with an increased
duration of 120 seconds) does not stop rendering particles to the screen at 30,000 TMP, which is
the desired outcome.

www.manaraa.com

99

Figure 5.32 A graph showing render ball function calls over total maximum particles for ten particle
effects. Since this failure did not occur for many particle effects, we see here that the Solution and
Non-Looping 1s Duration data series render the ball about the same number of times.

Figure 5.33 A graph showing particles actually rendered over total maximum particles for ten particle
effects. Similar to Figure 5.32, this shows that the Solution and Non-Looping 1s Duration data series
render about the same number of particles.

www.manaraa.com

100

Figure 5.34 A graph showing the number of section calls for various sections of code for a single
particle effect. This shows that the Non-Looping 120s Duration data series has fewer section calls
than the Non-Looping 1s Duration data series.

Figure 5.35 A graph showing the time spent in various sections of code for a single particle effect. This
shows that the Non-Looping 120s Duration data series has overall longer run times than the Non-
Looping 1s Duration data series; this is because the Particle Effect Component is actually
being rendered and processed instead of being stopped early on in the game.

www.manaraa.com

101

Figure 5.36 A graph showing the number of section calls for various sections of code for ten particle
effects. This shows: (1) The multiple-burst (or 0.1 TMP) games for the Non-Looping 1s Duration
data series has significantly more section calls than the Non-Looping 120s Duration data series,
and (2) The single-burst (or 1.0 TMP) games for the Non-Looping 1s Duration data series has a
little more section calls than the Non-Looping 120s Duration data series, but their values are fairly
similar.

Figure 5.37 A graph showing the time spent in various sections of code for ten particle effects. This
shows: (1) The multiple-burst (or 0.1 TMP) games for the Non-Looping 1s Duration data series
has a higher run time for particle update functions and a lower run time for particle draw functions
than the Non-Looping 120s Duration data series, and (2) The single-burst (or 1.0 TMP) games for
the Non-Looping 1s Duration and Non-Looping 120s Duration data series both have approximately
the same run time.

www.manaraa.com

102

CHAPTER 6 CONCLUSION

The optimization case studies in Chapter 4 demonstrated the differences between man-

aging contention for a single, large data structure and for many pieces or ”shards” of a frag-

mented data structure. The developers that designed ChilliSource’s Particle Effect

Components created them such that ”sharding” or breaking up the effect’s particles array

across many Particle Effect Components resulted in less contention between reader

and writer threads due to the decreased chance that either thread would be contending for

the same particle array. However, a solution that utilized ”lock free” atomic read-modify-

write operations could significantly reduce contention if a single, large data structure needed

to be used. Although a ”lock free” solution only improved ChilliSource’s performance when

there was a single particle effect, these findings are still useful for that scenario (i.e. two

threads contending for a single, large data structure).

The observation studies in Chapter 5 explored three aspects of the particle effect: (1)

the importance of the ConcurrentParticleData object, (2) the relationship between

ChilliSource’s Task Scheduler and Particle Effect Components, and (3) the per-

plexing scenarios in which particle effects do not visually emit particles.

The first study showed that using the ConcurrentParticleData object for a single

particle effect shifts the heavy contention to itself instead of the Particle Drawable. In

other words, if the ConcurrentParticleData object was not used during a game with

a single particle effect attached to the ball, then the Particle Drawable would take

on the contention that was observed within the CommitParticleData function which

resulted in fewer particles being drawn to the screen. For 10 particle effects, however, there

www.manaraa.com

103

was not any contention to begin with so using the ConcurrentParticleData object

made little difference.

The second study demonstrated that, depending on how background tasks are organized,

scheduling a background task may not necessarily be faster than its single-threaded imple-

mentation. ChilliSource’s ParticleEffectComponent leverages the fact that threaded

solutions generally do well if many threads work on many small problems at once; we

have seen throughout this study that particles distributed across many Particle Effect

Components (and thus many threads) consistently perform better than their single-threaded

counterparts.

Unlike the other studies that found results that could be applied to software engineering

as a whole, the third and final study investigated a problem that was limited to ChilliSource

and its Particle Effect Component. I found that, when using a non-looping particle

effect with a large number of particles, a large duration value should be set as well. Other-

wise, particle effects may not visually emit. Although this was partially a misconfiguration

on my part, it is something that ChilliSource may want to consider fixing so that a game

developer would not have to experience the same confusion as I did.

Aspects of ChilliSource that I would consider for future studies would be ways to further

optimize the Particle Effect Component. Although the optimization case studies

improved contention in CommitParticleData, only the games that utilized one particle

effect benefited since games with multiple particle effects did not experience contention in

the first place. A possible avenue of optimization would be improving the performance

time of Particle Affectors. Although I did not focus on the run time of Particle

Affectors in this thesis, the runtime of Particle Affectors is significant enough to

investigate. Any figures that listed timing metrics would demonstrate this, but a specific

example of this can be found in Figure 4.19. If we consider the ”Original; PPE is 0.1 of

TMP” data series, then we can see that about 27 of 75 seconds of ParticleUpdateTask’s

time is spent updating the effect’s Particle Affectors. Since this is about 36% of its

www.manaraa.com

104

time, it is worth a closer look.

www.manaraa.com

105

APPENDIX A INSTRUMENTATION APPENDIX

In this appendix, the instrumentation application systems that I created are explained

in great detail. This information is not critical to understanding my results, but the inner-

workings of these complex systems are here for those who are interested.

A.1 Overview

Different parts of the engine were instrumented in order to numerically quantity what

occurs during CSAPong games. Various metrics (e.g. particles actually emitted) were ex-

amined, and various sections of code were timed. These two use cases were separated into

two application systems that I created that resided within the engine itself, the Metrics

and Timing systems. As mentioned before, these systems will save a series of files con-

taining the gathered information into a timestamped folder within CSAPong’s save data

file system. These files fueled the direction of these studies due to their ability to answer

questions about the engine such as ”What function in Particle Effect Component

takes the longest to run?”

A.2 Metrics System

A.2.1 Metadata

Although not structurally complicated, the Metrics System keeps track of a great

deal of primitives that describe the series of games run by CSAPong. The following is a list

of the tracked primitives that remained constant throughout the games:

www.manaraa.com

106

Figure A.1 An example of metadata output by the
Metrics System. The important part to un-
derstand here is that these games are fall under
the multiple-burst scenario. In other words, the
particle effect emits its particles over time. As
Figure A.2 illustrates, the particles per emission
(PPE) is always 10% of the effect’s total max-
imum particles (TMP) because the step values
(PPE step is 50, TMP step is 500) are what dic-
tates the amount is added to PPE and TMP for
each game as time goes on.

Figure A.2 An example of the changing particle
values during games in CSAPong. This shows a se-
ries of games that fall under the multiple-burst sce-
nario with a min/max/step of 500/2000/500 and
with particles per emission (PPE) emitting 10% of
the effect’s total maximum particles (TMP).

� Are particles looping
– Whether or not the particle effect is looping. This means that the particle effect

will continue even after the duration has elapsed.

� Number of particle effects
– The number of Particle Effect Components that are attached to the ball

entity.

� Is total maximum particles changing
– Whether or not total maximum particles is changing across different particle

effect types.

� Total maximum particles (or TMP)
– If is total maximum particles changing is false, then this will be the constant

value of total maximum particles across particle effect types.

www.manaraa.com

107

� Is particles per emission changing
– Whether or not particles per emission is changing across different particle effect

types.

� Particles per emission (or PPE)
– If is particles per emission changing is false, then this will be the constant value

of particles per emission across particle effect types.

� Minimum particles
– The minimum value for the changing values (i.e. total maximum particles and/or

particles per emission).

� Maximum particles
– The maximum value for the changing values (i.e. total maximum particles and/or

particles per emission).

� Particles step
– The step value for the changing values (i.e. total maximum particles and/or

particles per emission). This is used in conjunction with the minimum and
maximum particles values to determine how many particle effects to create and
use during CSAPong’s execution.

� Particles per emission step
– If is particles per emission changing is true, then this will dictate the step value

for particles per emission across particle effect types. This is generally a fraction
of particles step.

� Total maximum particles step
– If is total maximum particles changing is true, then this will dictate the step

value for total maximum particles across particle effect types. This is generally
a fraction of particles step.

� Total number of runs
– The number of games to run per particle effect type.

� Duration per run
– The amount of time in seconds that a single game lasts.

Figure A.1 can be examined in order to make the distinction clear between the different

particle variables. The minimum particles is 500, the maximum particles is 2000, and the

particles step is 500. This tells us right away that there will be 2000/500 = 4 particle

definition files that will be created and played1. Note that this is similar to the example

shown near the end of Chapter 3 which also had a min/max/step of 500/2000/500.

www.manaraa.com

108

From the figure, we also know that particles per emission and total maximum particles

are changing over time and they will not be constant values. Thus, their ”step” values will

tell us how much each variable (i.e. total maximum particles and particles per emission) will

be added to as the game advances. We can also see that the total maximum particles step

is 500, or 100% of the particles step, and the particles per emission step is 50, or 10% of the

particles step. This is the same as the example variable blues given for the multiple-burst

scenario in Chapter 3.

Figure A.2 shows how all of these particle variables change as CSAPong executes. Note

that, since there are 4 different kinds of particle effects and 2 total number of runs, CSAPong

would play a total of 4× 2 = 8 times in this example.

A.2.2 Metrics

The Metrics System keeps track of three engine metrics, but it also manages six

system metrics. Engine metrics are metrics that originate from the engine, e.g. counting

the number of times that each particle was drawn. System metrics are metrics that come

from the metrics system, e.g. the current game run number. In other words, system metrics

come from metadata values, but they are printed with the engine metrics in order to give

Figure A.3: An example of metrics output by the Metrics System based on the metadata from Figure A.1.

1Note that we do not subtract 500 from 2000 since the range is inclusive.

www.manaraa.com

109

them context. The following list shows all of the different engine and system metrics that

are tracked:

� Engine Metrics
– All effects particles actually emitted

* As the game progresses, the size of the New Particle Indices array
after each emission is added to this metric.

– All effects particles actually rendered
* This is incremented every time a particle is rendered in the Drawable in-

stance.
– Render ball called

* This is incremented every time the ball is rendered.

� System Metrics
– Run number
– Per effect total max particles
– Per effect particles per emission
– All effects total max particles
– All effects particles per emission

A.2.3 Particle Effect Definition

As mentioned in Chapter 2, Particle Effects that are passed into Particle Effect

Components cannot be created programmatically. They must be created with JSON par-

ticle definition files. If tens or hundreds of particle effects needed to be created, then just as

many particle definition files would have to be made. This is clearly something that should

be done by hand, and so a script, generate particles.py, was created to automate

this process. An example invocation of this script is shown in Code Listing 23, and that

invocation will generate the particle definition files shown in Figure A.5. Note that these

generated particle effects are the same ones that were used in Figure A.1.

Code Listing 23: An example invocation of the generate particles script.

1 python generate_particles.py
2 > -changing Both
3 > -min 500 -max 2000 -step 500
4 > -tmpStep 1.0 -ppeStep 0.1;

www.manaraa.com

110

Figure A.4: Shows the parameters that the generate particles.py script can use.

Figure A.5: Shows the particle files that were generated by an invocation like in Code Listing 23.

A.3 Timing System

A.3.1 Visual Studio

ChilliSource generates a Visual Studio solution file for the developer to use when a project

is created, and so Visual Studio was utilized as an IDE during development on a Windows

machine. Visual Studio boasts a wide array of profiling tools which include (but is certainly

not limited to) CPU sampling and function instrumentation. The CPU sampling was con-

www.manaraa.com

111

Figure A.6 Shows an example of Visual Studio’s generated call tree for CPU instrumentation when
ran using the metadata from Figure A.1. This call tree in particular shows the ”hot path” of
execution, or the path that leads to the ”function leaf” with the highest exclusive samples %. In
this instance, the function calls that led to ParticleDrawable::DrawParticles was the ”hot
path” of execution.

Figure A.7 Shows the same call tree from Figure A.6, but sorted and filtered. The function call tree
level is ≥ 8, the function names begin with ”ChilliSource::”, the inclusive samples % is ≥ 6%, and
it is sorted by the inclusive samples % in descending order. These parameters were used to ensure
that the results were low-level ChilliSource function calls with a high inclusive sample percent. The
functions with the most inclusive samples are either related to rendering or updating particles.

www.manaraa.com

112

siderably helpful during the initial stages of these studies. The inclusive (includes samples

from all functions calls within it) and exclusive (only includes samples from itself) sampling

pointed out hot spots within the Particle Effect Component to investigate. The

call trees that the sampling produced (see figures Figure A.6 and Figure A.7) also assisted

in understanding how the engine worked. Although all of this information is helpful, the

CPU sampling does not provide concrete times. The function instrumentation that Visual

Studio provided should have filled that gap, but it was not used simply because it did not

reliably and smoothly work. It would slow down the game considerably during execution,

and then would take a great deal of time to process after execution. Even if it did work, it

did not have the flexibility to instrument custom sections, and it also could not be used to

instrument the game on other platforms such as iOS or Android.

A.3.2 Shiny

Seeking a way to instrument functions and custom blocks of code across all platforms, a

third party library called Shiny was used. Shiny is an older C/C++/Lua intrusive profiler

created by Aidin Abedi with ”very very low overhead” [10]. It allows the user to insert

macros within functions and code blocks, and it outputs a call tree very similar to Visual

Studio’s with the time used by the named code blocks and function calls. Although Shiny’s

creator asserted that Shiny is ”amazingly simple to use and flexible”, it took about a

week to integrate Shiny within CSAPong and ChilliSource in such a way that it worked

on Windows, iOS, and Android. The majority of the encountered problems had more to

do with compilation errors and flags, however, than the usage of Shiny’s API. The API

of Shiny is actually simple and flexible to use, as shown in Code Listing 24. Regrettably,

Shiny has two major flaws. First, it does not reliably run if the program is multi-threaded

(and ChilliSource is multi-threaded). Second, the output is not easily parsed since it is not

separated by delimiters, and parsable output was required to quickly format, collate, and

examine results during this thesis.

www.manaraa.com

113

Code Listing 24: Using the pseudocode from Code Listing 5, this shows how Shiny could be used to
instrument ParticleUpdateTask.

1 ParticleUpdateTask(copiedAtts)
2 {
3 // Use Shiny macro to profile the entire block
4 PROFILE_SHARED_BLOCK(ParticleUpdateTask);
5

6 // Use Shiny macros to profile outside and inside of the
7 // particle iteration loop
8 PROFILE_SHARED_BEGIN(ParticleIter_OuterLoop);
9 for(particle in copiedAtts.particleArray)

10 {
11 PROFILE_SHARED_BEGIN(ParticleIter_InnerLoop);
12 if(particle.isActive)
13 particle.UpdateValues();
14 PROFILE_END();
15 }
16 PROFILE_END();
17

18 // ... and so on
19 }

A.3.3 Timing Application System

I developed the Timing System due to dissatisfaction with the Visual Studio and Shiny

function profilers. This system reliably instruments the multi-threaded engine across all

platforms and returns results that are easily parsed. It uses the built-in Performance

Timer from ChilliSource along with its own StartTimer and StopTimer static methods

in order to time code blocks in a similar fashion to Shiny, as shown in Code Listing 25. To

achieve this, it uses three hash tables2 with the following key-value pairs:

� Timing Hash Table
– KEY: (std::string) Code section name
– VALUE: (double) Total time

� Timer Hash Table
– KEY: (std::string) Timer key
– VALUE: (ChilliSource::PerformanceTimer) Timer object

� Counting Hash Table

2In C++ 11, the closest thing to a hash table is an unordered map from the std namespace.

www.manaraa.com

114

Figure A.8: An example of timing output by the Timing System with just the ParticleUpdateTask
and the Particle Iteration times.

– KEY: (std::string) Code section name
– VALUE: (unsigned int) Number of code section calls

Code Listing 25: Using the pseudocode from Code Listing 5, this shows how our custom Timing System
could be used to instrument ParticleUpdateTask.

1 ParticleUpdateTask(copiedAtts)
2 {
3 // Statically call the timing system to start a timer with hash key
4 // "ParticleUpdateTask".
5 pUpdateTimerKey = TimingSystem::Start("ParticleUpdateTask");
6

7 // Use the timing system to keep track of the outer loop times
8 // during particle iteration.
9 pOutIterTimerKey = TimingSystem::Start("ParticleIter_OuterLoop");

10 for(particle in copiedAtts.particleArray)
11 {
12 if(particle.isActive)
13 particle.UpdateValues();
14 }
15 TimingSystem::Stop("ParticleIter_OuterLoop", pOutIterTimerKey);
16

17 // ... and so on
18

19 // Stop the timer with hash key "ParticleUpdateTask" and the outputted
20 // timer key
21 TimingSystem::Stop("ParticleUpdateTask", pUpdateTimerKey);
22 }

A.4 Output and its Evolution

From the examples that were shown above, it can be observed that the system output

lends itself to a tabular structure that follows a comma-separated-values format. Storing

www.manaraa.com

115

the data like this was simple, but storing the metadata proved to be more difficult.

At first, the metadata was stored all within the titles of the CSV (e.g. metrics maxRunNum

= 5 particle-effects = 1 ... [timestamp].csv). This worked well when there were only a cou-

ple of metadata values, but, as shown earlier in this chapter, there are now a great deal

of metadata values. Predictably, the titles of the CSVs eventually became so unruly that

Windows refused to open the files because the ”file path was too long”. This problem was

solved by first bundling the metrics and timing CSVs into one timestamped directory, and

then outputting another CSV file exclusively for metadata in that same directory.

Although the metadata problem was solved, bundles of CSVs were not a particularly

tidy approach when it came to distribution. However, any other method of outputting the

data in C++ would be far too complicated and out of scope for the purposes of our studies.

Outputting the data in another format using python, however, would not be as complex. I

created a python script to import the three bundled CSVs into an HDF5 file. HDF5, i.e.

Hierarchical Data Format 5, is ”a unique open source technology suite for managing data

collections of all sizes and complexity,”[11], designed to support large, complex datasets that

could be used on every size and type of system. HDF5 is hierarchical, high-performance,

portable, can be used in numerous languages, and it is self-describing. Admittedly, HDF5

may be overkill for my tens of CSVs, but its ability to efficiently bundle all of the output

files with metadata built right in is still useful. The HDF5 file that contains all of the results

presented in this thesis can be found in a Bitbucket repository [6].

www.manaraa.com

116

BIBLIOGRAPHY

[1] W. T. Reeves, “Particle systems – a technique for modeling a class of fuzzy objects,”

in Proceedings of the 10th Annual Conference on Computer Graphics and Interactive

Techniques, ser. SIGGRAPH ’83. New York, NY, USA: ACM, 1983, pp. 359–375.

[Online]. Available: http://doi.acm.org/10.1145/800059.801167

[2] ChilliWorks. (2014) Features. [Online]. Available: http://www.chillisourceengine.com/

features

[3] ——. (2014) Life cycle events. [Online]. Available: http://www.chillisourceengine.

com/life-cycle-events

[4] ChilliWorks and A. Gross. (2016) Chillisource automated cspong game. [Online].

Available: https://bitbucket.org/angelahnicole/um-thesis-cspong-benchmarking/src/

c00b947411a7e04e00d464108dee6235e3d692c1/?at=automation

[5] ChilliWorks. (2016) Chillisource sample projects. [Online]. Available: https:

//github.com/ChilliWorks/CSSamples

[6] A. Gross. (2016) Chillisource game engine particle system study dataset. [On-

line]. Available: https://bitbucket.org/angelahnicole/um-thesis-particle-optimization/

downloads/csgeps angela-gross thesis data.hdf5

[7] W. Goesgens. (2015) Comparison: Lockless programming with atomics in c++ 11

vs. mutex and rw-locks. [Online]. Available: https://www.arangodb.com/2015/02/

comparing-atomic-mutex-rwlocks/

http://doi.acm.org/10.1145/800059.801167
http://www.chillisourceengine.com/features
http://www.chillisourceengine.com/features
http://www.chillisourceengine.com/life-cycle-events
http://www.chillisourceengine.com/life-cycle-events
https://bitbucket.org/angelahnicole/um-thesis-cspong-benchmarking/src/c00b947411a7e04e00d464108dee6235e3d692c1/?at=automation
https://bitbucket.org/angelahnicole/um-thesis-cspong-benchmarking/src/c00b947411a7e04e00d464108dee6235e3d692c1/?at=automation
https://github.com/ChilliWorks/CSSamples
https://github.com/ChilliWorks/CSSamples
https://bitbucket.org/angelahnicole/um-thesis-particle-optimization/downloads/csgeps_angela-gross_thesis_data.hdf5
https://bitbucket.org/angelahnicole/um-thesis-particle-optimization/downloads/csgeps_angela-gross_thesis_data.hdf5
https://www.arangodb.com/2015/02/comparing-atomic-mutex-rwlocks/
https://www.arangodb.com/2015/02/comparing-atomic-mutex-rwlocks/

www.manaraa.com

117

[8] S. Mullender and R. Cox, “Semaphores in plan 9,” in 3rd International Workshop on

Plan, vol. 9, 2008, pp. 53–61.

[9] cppreference. (2015) Atomic compare exchange. [Online]. Available: http://en.

cppreference.com/w/cpp/atomic/atomic compare exchange

[10] A. Abedi and D. Love. (2011) Package of the shiny profiler by aidin abedi. [Online].

Available: https://github.com/dlove24/Shiny

[11] HDFGroup. (2016) High level introduction to hdf5. [Online]. Available: https:

//support.hdfgroup.org/HDF5/Tutor/HDF5Intro.pdf

[12] ChilliWorks. (2014) Basic structure. [Online]. Available: http://www.

chillisourceengine.com/basic-structure

[13] Halixi72. (2007) Particle emitter. [Online]. Available: https://en.wikipedia.org/wiki/

File:Particle Emitter.jpg

[14] ——. (2007) Strand emitter. [Online]. Available: https://en.wikipedia.org/wiki/File:

Strand Emitter.jpg

[15] ChilliWorks and A. Gross. (2016) Chillisource v1.6.0 code reposi-

tory. [Online]. Available: https://bitbucket.org/Chilli-Ian/chillisource-ag/src/

781988bb9a8ee518c4ea6545ac0e5c55238ec562?at=temp/particleMetrics

http://en.cppreference.com/w/cpp/atomic/atomic_compare_exchange
http://en.cppreference.com/w/cpp/atomic/atomic_compare_exchange
https://github.com/dlove24/Shiny
https://support.hdfgroup.org/HDF5/Tutor/HDF5Intro.pdf
https://support.hdfgroup.org/HDF5/Tutor/HDF5Intro.pdf
http://www.chillisourceengine.com/basic-structure
http://www.chillisourceengine.com/basic-structure
https://en.wikipedia.org/wiki/File:Particle_Emitter.jpg
https://en.wikipedia.org/wiki/File:Particle_Emitter.jpg
https://en.wikipedia.org/wiki/File:Strand_Emitter.jpg
https://en.wikipedia.org/wiki/File:Strand_Emitter.jpg
https://bitbucket.org/Chilli-Ian/chillisource-ag/src/781988bb9a8ee518c4ea6545ac0e5c55238ec562?at=temp/particleMetrics
https://bitbucket.org/Chilli-Ian/chillisource-ag/src/781988bb9a8ee518c4ea6545ac0e5c55238ec562?at=temp/particleMetrics

